Снимки черных дыр. Что если человек попадет в черную дыру

Гениальный физик-теоретик и космолог Стивен Хокинг любит рассуждать на темы, которые заставляют нас переосмыслить множество научных явлений. Несколько дней назад его новое исследование заставило усомниться в существовании одного из самых загадочных явлений космоса - черных дыр. А пока ученые пытаются понять его новое исследование, предлагаю вам узнать интересные факты о черных дырах.

По мнению исследователя (которое изложено в работе “Сохранение информации и прогнозы погоды для черных дыр”), то, что мы называем чёрными дырами, может существовать без так называемого “горизонта событий”, за который вырваться уже ничто не может. Хокинг считает, что чёрные дыры удерживают свет и информацию только какое-то время, а потом “выплёвывают” обратно в космос, правда, в изрядно искажённом виде.

Свое название чёрные дыры получили потому, что всасывают свет, который касается ее границ, и не отражают его

Формируясь в момент, когда достаточно сжатая масса вещества деформирует пространство и время, черная дыра имеет определенную поверхность, называемую “горизонтом событий”, знаменующую собой точку невозврата.

Черные дыры влияют на течение времени

Близко к уровню моря часы идут медленнее, чем на космической станции, а вблизи черных дыр и того медленнее. Это каким-то образом связано с силой тяжести.

Ближайшая черная дыра находится примерно в 1600 световых лет от нас

Наша галактика усеяна черными дырами, однако ближайшая из тех, что теоретически способны уничтожить нашу скромную планету, находится далеко за пределами нашей Солнечной системы.

Огромная черная дыра находится в центре галактики Млечный Путь

Она расположена на расстоянии 30 тысяч световых лет от Земли, а её размеры более чем в 30 миллионов раз превышают размеры нашего Солнца.

Черные дыры, в конце концов, испаряются

Считается, что ничто не может вырваться из черной дыры. Единственное исключение из этого правила – радиация. По мнению некоторых ученых, по мере того, как черные дыры излучают радиацию, они теряют массу. В результате этого процесса черная дыра может и вовсе исчезнуть.

Черные дыры имеют форму не воронки, а сферы

В большинстве учебников вы увидите черные дыры, которые выглядят, как воронки. Это происходит потому, что они проиллюстрированы с точки зрения гравитационного колодца. В действительности они больше похожи на сферу.

Вблизи черной дыры всё искажается

Черные дыры обладают способностью искажать пространство, и, поскольку они вращаются, то искажение усиливается по мере вращения.

Черная дыра может убить ужасным образом

Хотя это кажется очевидным, что черная дыра несовместима с жизнью, большинство людей думают, что там их бы просто раздавило. Не обязательно. Вас, скорее всего, растянуло бы до смерти, потому что часть вашего тела, первой достигшая «горизонта событий» оказалась бы под значительно большим влиянием силы тяжести.

Черные дыры не всегда черные

Хотя они известны своей чернотой, как мы уже говорили ранее, они на самом деле излучают электромагнитные волны.

Черные дыры способны не только разрушать

Конечно, в большинстве случаев, так и есть. Однако существуют многочисленные теории, исследования и предположения о том, что черные дыры действительно могут быть приспособлены для получения энергии и для космических путешествий.

Открытие черных дыр принадлежит не Альберту Эйнштейну

Альберт Эйнштейн только возродил теорию черных дыр в 1916 году. Задолго до того, в 1783 году, ученый по имени Джон Митчелл первым разработал эту теорию. Это произошло после того, как он задался вопросом, может ли гравитация стать настолько сильной, что даже легкие частицы не могли бы избежать ее.

Черные дыры гудят

Хотя вакуум в космосе на самом деле не передает звуковых волн, если слушать с помощью специальных инструментов, то можно услышать звуки атмосферных помех. Когда черная дыра затягивает что-то внутрь, ее горизонт событий ускоряет частицы, вплоть до скорости света, и они производят гул.

Черные дыры могут генерировать элементы, необходимые для зарождения жизни

Исследователи считают, что черные дыры создают элементы по мере своего распада на субатомные частицы. Эти частицы способны создавать элементы тяжелее гелия, такие как железо и углерод, а также многие другие, необходимые для формирования жизни.

Черные дыры не только “проглатывают”, но и “выплевывают”

Черные дыры известны тем, что всасывают все, что оказывается вблизи их горизонта событий. После того, как что-то попадает в черную дыру, оно сдавливается с такой чудовищной силой, что отдельные компоненты сжимаются и в конечном счете распадаются на субатомные частицы. Некоторые ученые предполагают, что эта материя затем выбрасывается из того, что называют “белой дырой”.

Любая материя может стать черной дырой

С технической точки зрения, черными дырами могут становиться не только звезды. Если бы ключи от вашей машины уменьшились до бесконечно малой точки, сохранив при этом свою массу, то их плотность достигла бы астрономического уровня, и сила их тяжести увеличилась бы до невероятности.

Законы физики теряют силу в центре черной дыры

Согласно теориям, вещество внутри черной дыры сжимается до бесконечной плотности, а пространство и время перестают существовать. Когда это происходит, законы физики перестают действовать, просто потому, что человеческий разум не способен вообразить предмет, имеющий нулевой объем и бесконечную плотность.

Черные дыры определяют количество звезд

По мнению некоторых ученых, число звезд во Вселенной ограничено количеством черных дыр. Это связано с тем, как они влияют на газовые облака и образование элементов в тех частях Вселенной, где рождаются новые звезды.

Черные дыры - таинственные, невероятно плотные и тяжелые; физика лишь начинает исследовать их свойства. Однажды угодив в их объятия, ничто, даже свет, не может из них вырваться.

Хотя своей загадочностью это удивительное явление будоражит воображение, ни одной черной дыры ни один человек никогда не видел. Если вы увидите картинку черной массы, искажающей вокруг себя пространственно-временной континуум, знайте - это просто иллюстрация.

Выглядит здорово, но это только картинка

Почему ни один астроном никогда непосредственно не наблюдал черную дыру

Самая большая проблема, которая встает на пути попыток обнаружить черные дыры, заключается в том, что даже самые массивные из них относительно невелики. Димитриос Псалтис, астрофизик из Университета Аризоны объясняет:

«Самая большая черная дыра в нашем небе находится в центре Млечного Пути. И сфотографировать ее - это примерно как снять компакт-диск на поверхности Луны».

Кроме того, из-за сильного гравитационного поля черные дыры, как правило, окружены другими яркими объектами, так что разглядеть их самих особенно трудно.

Поэтому, когда астроном ищет черную дыру, он даже не пытается получить ее изображение - вместо этого он ищет свидетельства того, что ее гравитационное поле и радиация взаимодействуют с другими объектами. Псалтис говорит:

«Мы обычно фиксируем орбиты звезд и скоплений газа, которые концентрируются вокруг темного участка неба, и стараемся измерить массу этого темного объекта. Если масса получается слишком большой для любого другого темного объекта, который мог бы там находиться, мы считаем это признаком черной дыры».

Впрочем, у нас есть косвенные изображения черных дыр

Одни из лучших изображений были получены в рентгеновской обсерватории Чандра, где работает Эдмондс. Он говорит:

«Трение и высокая скорость движения материи, из которой образуется черная дыра, становятся естественным источником рентгеновского излучения. А Чандра - космический телескоп, специально разработанный для регистрации таких лучей».

Так, обсерватория Чандра задокументировала рентгеновские всплески, образовавшиеся при слиянии двух галактик примерно в 26 млн световых лет от Земли. Астрофизики подозревают, что их непосредственным источником была массивная черная дыра.

Рентгеновский диапазон: NASA / CXC / Университет Техаса / Е. Шлегель и др.; Оптический диапазон: NASA / STScI

Аналогично, малиновые пятна на этом снимке - области интенсивного рентгеновского излучения. Предполагается, что их источниками стали черные дыры, образовавшиеся при столкновении двух галактик (розовое и синее кольца).

NASA / CXC / IoA / А. Фабиан и др.

На этой анимации изображена самая крупная рентгеновская вспышка из области в центре Млечного Пути, где, как предполагается, находится массивная черная дыра. Зафиксирована телескопом Чандра.

NASA / CXC / Амхерст-колледж / Д. Хаггард и др.

А это та же рентгеновская вспышка, но с меньшим увеличением.

Общий вид участка неба, где была зафиксирована рентгеновская вспышка из центра Млечного Пути. (NASA / CXC / Амхерст-колледж / Д. Хаггард и др.

Мы видим гигантские струи материи - джеты, которые черные дыры выбрасывают в пространство

Это составное изображение (построенное путем объединения данных телескопа Хаббл и радиотелескопа), на котором видны струи материи и энергии, расходящиеся из центра галактики Геркулес. Они летят почти со скоростью света, иллюстрируя удивительную разрушительную силу космических объектов.

NASA / Телескоп Хаббл

На следующей фотографии видны огромные джеты, порожденные, как считается, черной дырой в центре галактики Центавр А, расположенной в 13 млн световых лет лет от Земли. Джеты длиннее самой галактики.

ESO / WFI (видимый диапазон); MPIfR / ESO /APEX / А. Вейсс и др. (микроволновое излучение); NASA /CXC / CfA / Р. Крафт и др. (рентгеновское излучение)

Астрономы наблюдают звезды, вращающиеся вокруг таинственных темных объектов, вероятнее всего, черных дыр

На этом видео показано движение звезд вблизи центра Млечного Пути на протяжении 16-летнего интервала, свидетельствующее о наличии там черной дыры.

Уже скоро мы можем увидеть настоящую черную дыру

Та часть черной дыры, которую можно запечатлеть - это ее горизонт событий, граница, попав за которую, ничто не может вырваться назад. Ученые предполагают, что он будет выглядеть, как показано на картинке: резкая граница между светом и тьмой.

NASA / JPL-Caltech

На иллюстрации выше сверхмассивная черная дыра в центре окружена поглощаемой ей материей, формирующей так называемый аккреционный диск. Этот диск образуется из пыли и газа, падающего на черную дыру под действием гравитации. Также показан исходящий поток высокоэнергетических частиц, который, как считается, получает энергию от вращения черной дыры.

На настоящей фотографии также может быть виден аккреционный диск, то есть вращающееся вокруг дыры яркое кольцо материи (когда в фильме «Интерстеллар» показывают черную дыру, мы видим именно аккреционный диск).

Интересно, что в ближайшие несколько лет ученые надеются подтвердить существование черной дыры в центре Млечного Пути - и определить, как она выглядит.

Это может стать возможно благодаря телескопу «Горизонт событий» - он представляет собой глобальную сеть датчиков, которые, по сути, составляют единый телескоп размером с нашу планету. По плану снимок черной дыры должен быть готов к концу 2017 года - это будет первое изображение горизонта событий. Эдмондс говорит:

«Они надеются увидеть саму тень, саму темную область. Это будет очень важное достижение».

Непосредственное изображение черной дыры позволит ученым больше узнать о влиянии сверхвысокой гравитации и получить дополнительные данные для проверки теории относительности.

  • Космонавтика ,
  • Физика ,
  • Астрономия
  • В среду ночью 120 астрономов из 8 обсерваторий на четырех континентах начали первую попытку сделать фотографию черной дыры. Съёмка началась 5 апреля и продлится до 14 апреля этого года. Объектом наблюдения стали окрестности двух сверхмассивных черных дыры, одна в центре нашего Млечного Пути, другая в соседней галактике Messier 87. Первая близко, но маленькая в диаметре, вторая очень далеко, но громадная. Чью лучше разглядят - пока вопрос. Ближайшая к нам Стрелец A* (Sagittarius A*) находится в центре нашей галактики Млечного Пути на расстояние в 26 тысяч световых лет. Дальняя в 6 миллиардов раз больше массы нашего светила, поэтому горизонт событий вокруг неё больше. Стрелец А* массой в 1,5 тысячи раз меньше и умещается в пространстве, меньшем, чем объем внутри орбиты Меркурия.

    В чем важность наблюдения объясняет Гопал Нараянан, профессор-исследователь астрономии в Университете Массачусетса в Амхерсте: «В основе общей теории относительности Эйнштейна лежит представление о том, что квантовая механика и общая теория относительности могут быть объединены, что существует великая, единая теория фундаментальных понятий. Горизонт событий черной дыры - именно то место, где это возможное объединение лучше всего изучать". Результаты мы узнаем только в 2018 году, когда компьютеры обработают полученные данные. В конце поста есть предполагаемое изображение, которое мы должны увидеть, если верна теория Энштейна.

    Для наблюдения за горизонтами событий из разрозненных радиотелескопов, рассматривающих каждый свой участок неба, астрономы создали виртуальный радиотелескоп размером с Землю. 8 обсерваторий в 6 территориальных точках ведут съемку.


    В проекте участвуют Обсерватория Массачусетского технологического института (ведущая организация), Гарвард-Смитсоновский центр астрофизики, Объединенная обсерватория ALMA (Чили), Национальная радиоастрономическая обсерватория (NRAO), Институт радиоастрономии им. Макса Планка (Германия), Университет Консепсьона (Чили), Институт астрономии и астрофизики при Центральной академии Тайваня (ASIAA, Тайвань), Национальная астрономическая обсерватория Японии (NAOJ) и Обсерватория Онсала (Швеция). Объединение радиотелескопов важно для наблюдения быстротекущих процессов во Вселенной, к которым относятся, например, взрывы сверхновых звезд и потоки космического излучения, а также для детальных изучений мелких удаленных космических объектов, таких, как черная дыра Стрелец A*. Возможности наиболее мощных оптических телескопов ограничены при наблюдении даже самых массивных объектов, а черные дыры являются чрезвычайно компактными.

    Связывая воедино мощности радиотелескопов, расположенных в разных частях земного шара, ученые астрономы получили возможность рассмотреть крайне далекие космические объекты с четкостью, в два миллиона раз превышающей остроту человеческого зрения. Будь у человека такое зрение он бы увидел лежащие на Луне грейпфрут или компакт-диск.

    К запуску этого «виртуального» телескопа под названием Event Horizon Telescope привело развитие технологий интерферометрии с длинной базой (Very Long Baseline Interferometry, VLBI) в течение последних двадцати лет. По этой же модели работает крупнейший миллиметровый радиотелескоп мира – обсерватория Atacama Large Millimeter/submillimeter Array (ALMA) на высокогорном плато Чахнантор в Чили и он тоже участвует в проекте. В проекте EHT с 5 по 14 апреля VLBI-технология превращает все подключенные к ней телескопы в огромный телескоп, размером с нашу планету. Были объединены мощности самых чувствительных радио-обсерваторий мира в Чили, Испании, Калифорнии, Аризоне, на Гавайских островах и на южном полюсе Земли. Крупнейшая из них - вышеупомянутая ALMA, - состоит из 54 параболических антенн 12-метрового диаметра и 12 тарелок диаметром 7 метров.

    Еще одна интригующая идея, которую можно изучить в этом эксперименте, - это так называемый «информационный парадокс». Это явление - предсказание Стивена Хокинга о том, что материя, попавшая в черную дыру, не может быть потеряна за пределами известной вселенной, что она должна каким-то образом течь обратно. Вот увидеть как она течет и хотят астрономы. Энергия или информация покидающая чёрную дыру посредством излучения Хокинга, представляет собой квантовый эффект. Ученые регулярно видят истечение больших плазменных струй из центра галактик, где предполагаются или есть черные дыры. Если связь черных дыр и этих струй есть (либо другие утечки информации и энергии), то истинные горизонты событий в строгом смысле у сколлапсировавших объектов в нашей Вселенной не формируются.

    Прав ли Эйнштейн

    Увидеть саму черную дыру нельзя, а вот падающее в нее вещество - можно. Пыль, газ и ближайшие звезды создают вокруг черных дыр область высоких энергий, или так называемый, аккреционный диск , в котором материя сжимается и закручивается, как в воронке, и разогревается. Благодаря высоким энергиям вещество начинает ярко светиться поблизости от «горизонта событий» - рубежа, после которого черная дыра никакого излучения и информации от себя не отпускает. Таким образом мы видим изображение «поедаемой» черной дырой материи, некую тень черной дыры.

    Современная стандартная космологическая модель ΛCDM («Лямбда-СиДиЭм») предполагает, что общая теория относительности является правильной теорией гравитации на космологических масштабах и наше местоположение во Вселенной никак особенно не выделяется, то есть на достаточно большом масштабе Вселенная выглядит одинаково во всех направлениях (изотропность) и из каждого места (однородность). Это тоже может быть подтверждено или опровергнуто.

    Черные дыры объединяют в себе свойства, описываемые двумя основными физическими теориями нашего времени – теорией общей относительности (теория больших структур) и квантовой механикой (теория малых расстояний). Огромная масса черной дыры требует применения общей теории относительности для описания искривления пространства-времени, вызванного ею. Но малые размеры черной дыры и внутренние процессы требуют использования квантовой механики. До сих пор не удалось совместить обе эти теории. Объединение теорий приводит к неестественным уравнениям – например, из них следует бесконечная плотность черной дыры. Ранее в 2015 году телескоп Event Horizon Telescope (EHT) уже измерил магнитные поля в окрестностях этой черной дыры, но их структура была крайне необычной – сила магнитного поля в отдельных регионах диска менялась каждые 15 минут, а его конфигурация была очень разной в разных уголках.

    Согласно некоторым выкладкам общей теории относительности Альберта Эйнштейна, на снимках мы сможем увидеть «полумесяц» света, окружающего абсолютно черную «каплю». Этот свет излучается материей прямо перед тем моментом, когда она пройдет через границу горизонта событий черной дыры. На горизонте событий Стрельца А* ученые предполагают увидеть множество вспышек. Эти точечные вспышки периодически генерируются там с высокой частотой - раз в день. На основе прошлых наблюдений несколько обсерваторий наблюдали нечто похожее на вспышки - осветление выбросов из Стрельца А*. В результате нынешних исследований астрономы получат возможность отслеживать их происхождение и смотреть за процессом их уменьшения.

    При удачном развитии событий горячие точки станут маркером структуры временного пространства в этой сильной гравитационной области. «Это открывает двери к возможности проведения томографии временного пространства - эти пятна передвигаются, они возникают в различных областях наблюдения», - сказал ранее на презентации EHT Эвери Бродерик, доцент кафедры физики и астрономии в Университете Ватерлоо. «Во вселенной есть только два места, где можно изучить сильную гравитацию в больших, очень больших масштабах и вокруг компактных объектов», - напоминает он.
    Если мы увидим нечто, в корне отличающееся от того, что мы ожидаем, физикам придется пересмотреть, к примеру, теорию гравитации.

    Первые снимки черной дыры, которые сможем увидеть и мы с вами, появятся не раньше 2018 года. А тем временем, посмотрим на то, что мы сможем приблизительно увидеть на этих снимках, построенных в результате компьютерного моделирования.

    Объединение данных и создание общей картины с использованием измерений телескопа горизонта событий является некорректной задачей, потому что каждый из результатов содержит бесконечное количество возможных изображений, объясняющих полученные данные. Задача астрономов состоит в том, чтобы найти объяснение, которое учитывает эти предварительные предположения, при этом удовлетворяя наблюдаемым данным. Угловое разрешение телескопа, необходимое для получения достаточного объема данных, требует преодоления многих проблем и затрудняют однозначную реконструкцию изображения. Например, при наблюдаемых длинах волн быстро изменяющиеся неоднородности в атмосфере вносят погрешности измерения. Надежные алгоритмы, которые способны восстанавливать изображения в режиме тонкого углового разрешения, ищутся постоянно.

    Пока что задачу очистки, интерпретации и сведения полученных данных в одно изображение с высокой разрешающей способностью выполняет алгоритм CHIRP (Continuous High-resolution Image Reconstruction using Patch priors), разработанный группой ученых из Массачусетского технологического института. Однако если вы достаточно разбираетесь в физике и математике, то авторы CHIRP опубликовали для таких эрудитов простые онлайн-инструменты на сайте MIT , при помощи которых любой человек, обладающий навыками программирования, сможет создать и опробовать свой вариант алгоритма обработки данных от телескопа Event Horizon. Вдруг вы сможете увидеть проблему под совершенно нетрадиционным углом и предложить уникальный метод ее решения. Я правда не нашел информации о вознаграждении. Но может плохо искал.

    В комплекте инструментов:

    • Набор объединенных обучающих данных
    • Набор измерений реальных данных
    • Стандартизованный набор данных для тестирования алгоритмов восстановления изображений
    • Интерактивная количественная оценка эффективности алгоритма на моделируемых тестовых данных
    • Качественное сравнение производительности алгоритма при реконструкции реальных данных
    • Онлайн-форма стенд для моделирования реалистичных данные, с использованием собственных параметров изображения и телескопа
    О подготовке телескопа EHT Geektimes уже писал

    Теги:

    • черная дыра
    • радиотелескоп
    • вселенная
    Добавить метки

    Нет более завораживающего своей красотой космического явления, чем черные дыры. Как известно, свое название объект получил из-за того, что способен поглощать свет, но при этом не может отражать его. Из-за огромного притяжения черные дыры всасывают все, что находится рядом с ними – планеты, звезды, космический мусор. Однако это далеко не все, что следует знать про черные дыры, так как существует множество удивительных фактов про них.

    Точки невозврата у черных дыр нет

    Долгое время считалось, что все, что попадает в область черной дыры остается в ней, но результатом последних исследований стало то, что оказывается спустя время черная дыра «выплевывает» в космос все содержимое, но в другом виде, отличном от первоначального. Горизонт событий, который считался точкой невозврата для космических объектов, оказался лишь их временным убежищем, однако этот процесс происходит очень медленно.

    Земле угрожает черная дыра

    Солнечная система лишь часть бесконечной галактики, в которой находится огромное количество черных дыр. Оказывается, что и Земле угрожает две из них, но к счастью, находятся они на огромном расстоянии – около 1600 световых лет . Обнаружены они в галактике, которая образовалась в результате слияния двух галактик.


    Увидели черные дыры ученые только благодаря тому, что они находились рядом с Солнечной системой с помощью рентгеновского телескопа, который способен улавливать рентгеновские лучи, излучаемые этими космическими объектами. Черные дыры, так как они находятся рядом друг с другом и практически сливаются в одну, назвали одним именем – Чандра в честь бога Луны из индуистской мифологии. Ученые уверены, что вскоре Чандра станет единым целым из-за огромной силы гравитации.

    Черные дыры со временем могут исчезнуть

    Рано или поздно все содержимое из черной дыры выходит и остается только радиация. Теряя массу, черные дыры со временем становятся меньше, а после совсем исчезают. Гибель космического объекта очень медленна и потому вряд ли кому-то из ученых удастся увидеть, как уменьшается, а после и исчезает черная дыра. Стивен Хоккинг утверждал, что дыра в космосе представляет собой сильно сжатую планету и со временем она испаряется, начиная с краев искажения.

    Черные дыры не обязательно могут выглядеть черными

    Ученые утверждают, что так как космический объект поглощает в себя световые частицы, не отражая их, черная дыра не имеет цвета, выдает ее только поверхность – горизонт событий. Своим гравитационным полем она заслоняет все пространство позади себя, включая планеты и звезды. Но при этом из-за поглощения планет и звезд на поверхности черной дыры по спирали из-за огромной скорости движения объектов и трения между ними, появляется свечение, которое может быть ярче звезд. Это скопление газов, звездной пыли и другой материи, которую затягивает черная дыра. Также иногда черная дыра может излучать электромагнитные волны и потому может быть видимой.

    Черные дыры не создаются из ниоткуда, их основа – погасшая звезда

    Звезды светятся в космосе благодаря своему запасу термоядерного топлива. Когда он заканчивается, звезда начинает охлаждаться, постепенно превращаясь из белого карлика в черного. Внутри остывшей звезды начинает снижаться давление. Под действием силы гравитации космическое тело начинает сжиматься. Следствием этого процесса является то, что звезда как бы взрывается, все ее частицы разлетаются в космосе, но при этом силы гравитации продолжают действовать, притягивая соседние космические объекты, которые после поглощаются ею, увеличивая мощность черной дыры и ее размеры.

    Сверхмассивная черная дыра

    Черная дыра, размеры которой в десятки тысяч раз превышают размеры Солнца, находится в самом центре Млечного пути. Ученые назвали ее Стрелец и находится она от Земли на расстоянии 26000 световых лет . Данная область галактики чрезвычайно активна и с огромной скоростью поглощает все, что находится рядом с ней. Также часто она «выплевывает» погасшие звезды.


    Удивительным является тот факт, что средняя плотность черной дыры, даже учитывая ее огромный размер, может быть равна даже плотности воздуха. С увеличением радиуса черной дыры, то есть количества захваченных ею объектов, плотность черной дыры становится меньше и объясняется это простыми законами физики. Таким образом, самые большие тела в космосе на самом деле могут быть такими же легкими, как и воздух.

    Черная дыра может создать новые Вселенные

    Как бы это не звучало странно, особенно на фоне того, что на самом деле черные дыры поглощают и соответственно разрушают все вокруг, ученые всерьез задумываются о том, что данные космические объекты могут положить начало появлению новой Вселенной. Так, как известно черные дыры не только поглощают материю, но и могут освобождать ее в определенные периоды. Любая частичка, которая вышла из черной дыры, может взорваться и это станет новым Большим взрывом, а согласно его теории наша Вселенная так и появилась, потому не исключено, что Солнечная система, которая сегодня существует и в которой вертится Земля, населенное огромным количеством людей, когда-то была рождена массивной черной дырой.

    Возле черной дыры время идет очень медленно

    Когда объект подходит близко к черной дыре, вне зависимости от того, какая у него масса, его движение начинает замедляться и это происходит потому, что в самой черной дыре время замедляется и все происходит очень медленно. Это связано с огромной силой гравитации, которую имеет черная дыра. При этом то, что происходит в самой черной дыре происходит достаточно быстро, потому если бы наблюдатель смотрел на черную дыру со стороны, ему показалось бы, что все происходящие процессы в ней протекают медленно, однако если бы попал в ее воронку, силы гравитации мгновенно бы разорвали его.

    Наука

    Астрономы впервые опубликовали гипотетические изображения черной дыры и сообщили, что, по их представлениям, этот загадочный космический объект должен выглядеть именно так. Однако следует признать, что никто из них никогда не сможет проверить свою теорию на практике.

    Черные дыры в визуальном смысле не оправдывают в полной мере свое название - эти объекты на самом деле невидимы , так как даже свет, попавший в них, не может избежать их гравитационного поля.

    Однако ученые полагают, что границы черной дыры, то есть точка невозврата, которая называется горизонт событий , должна быть видимой из-за радиации, излучаемой материалом, который поглощается.

    На 221-й встрече Американского Астрономического Общества ученые из Университета Калифорнии в Беркли представили изображение, сделанное с помощью компьютера, сообщив, что именно так должна выглядеть черная дыра :

    Черная дыра Млечного пути (фото)

    Изображение черной дыры Млечного пути, представленное Айманом Бином Камруддином из Калифорнийского Университета

    Как видно на картинке, реальная черная дыра с границами имеет форму полумесяца , а вовсе не бесформенного объекта или просто черного шара, как многие изображали ее ранее.

    Окружающая черную дыру среда имеет довольно интересную физику и излучает свечение , сказали астрономы. Технически мы не видим саму черную дыру, но можем представить, как выглядит горизонт событий.

    Это изображение не просто догадки астрономов и их богатое воображение. Картинку создали на основе модели, которую ученые используют для интерпретации изображений, созданных с помощью нового оборудования , которое сегодня находится в процессе разработки.

    Представления художников о черной дыре обычно весьма примитивны

    Новый проект под названием Телескоп "Горизонт Событий" будет собирать данные по всемирной сети, полученные радио телескопами из разных уголков света , чтобы затем можно было изобразить объекты, которые являются слишком крошечными, чтобы их можно было увидеть, или вообще не доступны глазу человека.

    Новый телескоп уже сделал ряд предварительных измерений и собрал первые данные относительно черной дыры в центре нашей галактики Млечного пути, известной как Стрелец A .

    Исследователи проверили полученные данные с помощью разных моделей и пришли к выводу, что черная дыра, вернее, то, что ее окружает, имеет форму полумесяца, а не чего-то другого. Это форма отражает "пончикообразный" диск из материала , который вращается вокруг черной дыры и в одном месте засасывается в нее.

    Газ вращается вокруг черной дыры, а сторона, которая направлена в сторону наблюдателей с Земли, будет казаться ярче с силу особых космических процессов. Другая сторона при этом будет более темной . В центре полумесяца находится темный круг, который представляет собой саму черную дыру.

    Центр Млечного пути с черной дырой Стрелец А. Снимок сделан с помощью космического телескопа "Чандра" НАСА

    Первые изображения черной дыры Стрельца А, по мнению астрономов, помогут им определить массу этого объекта , который находится в центре нашей галактики, а также проверить некоторые аспекты общей теории относительности, которые остаются под сомнением.


    Другие уникальные изображения космических объектов и черных дыр

    Многие космические объекты с помощью современной техники можно заснять на фото . Эти снимки и изображения представляют большую ценность для астрономов, которые с их помощью делают многие открытие. Предлагаем вам познакомиться с самыми любопытными снимками , сделанными с помощью телескопов за последние пару десятков лет.

    Астрономы опубликовали снимки очень далеких уголков космоса, сделанные с помощью космического телескопа НАСА "Спицер" . На снимках изображены очень далекие объекты , в том числе супермассивные черные дыры, вернее не сами дыры, а окружающий их материал.

    Рентгеновское излучение, исходящее из нагретого материала, падающего в черную дыру


    Следы черной дыры во Вселенной

    Яркий "зигзаг" справа - вовсе не работа художника-авангардиста, а подпись супермассивной черной дыры в центре галактики М84 , полученная с помощью спектрографа космического телескопа. Эта подпись представляет собой движение газа, пойманного гравитационными силами черной дыры . Слева показано изображение центра галактики, где предположительно "обитает" черная дыра.

    Ядро галактики М84, снятое космическим телескопом НАСА "Хаббл"


    Черная дыра в космосе

    Гравитационные силы предполагаемой черной дыры образуют диск, похожий на тарелку для игры во фрисби , который состоит из холодного газа и находится в центре галактики. Позже наблюдения с помощью "Хаббла" подтвердили существование огромных черных дыр, которые поглощают все вокруг, даже свет.

    Кольцо вокруг предполагаемой черной дыры галактики NGC 4261


    Звездное скопление с черной дырой

    На этом снимке видно звездное скопление G1, крупный шар из света, который состоит из не менее 300 тысяч старых звезд . Этот объект также часто называют скоплением Андромеды , так как оно находится в галактике Андромеда , ближайшей спиральной галактике от Млечного пути.

    Шаровое звездное скопление в соседней галактике. Снимок сделан с помощью космического телескопа "Хаббл" в 1996 году


    Большая черная дыра

    Гигантская черная дыра может "выпускать" огромные пузыри горячего газа в космическое пространство. По крайней мере, такое странное свойство замечено у черной дыры в центре галактики NGC 4438 . Эта галактика относится к группе пекулярных галактик , то есть галактик, имеющих неправильную форму. Она расположена в районе созвездия Девы и находится в 50 миллионах лет от нас . Пузыри на самом деле представляют собой диск из материала, поглощаемого черной дырой.

    Черная дыра, "надувающая" невероятно горячие пузыри газа, которые являются следствием больших аппетитов черной дыры. Пузырь имеет диаметр около 800 световых лет


    Эллиптическая галактика с массивной черной дырой

    Этот снимок изображает центральную часть эллиптической галактики М87 с сопутствующей ей струей. Увеличение яркости галактики к центру, что можно заметить на изображении, говорит о том, что звезды сконцентрированы в районе ядра и удерживаются там гравитационным полем массивной черной дыры. Плазменная струя, которую также видно на снимке и источником которой является горячий газовый диск вокруг черной дыры, имеет длину около 5 тысяч световых лет .

    Фото телескопа НАСА, сделанное 1 июня 1991 года, на котором изображен центр галактики М87 со струей


    Звездное скопление с умирающей звездой

    Расположенное на расстоянии около 40 тысяч световых лет от Земли в районе созвездия Пегас скопление М15 является одним из 150 известных шаровых звездных скоплений, которые образуют гигантские светящиеся кольца и окружают нашу галактику Млечный путь. Все эти скопления содержат сотни тысяч древних звезд. Если бы мы жили где-то в центре этого скопления, наше небо сияло бы тысячами звезд , которые горели бы и днем, и ночью.

    Звездное скопление М15 с умирающей звездой в центре. Снимок телескопа "Хаббл", который показывает скопление в реальных цветах

    
    Top