Большая часть элементов в таблице менделеева металлы.

Природа имеет некую цикличность и повторяемость в своих проявлениях. На это обращали внимание и древнегреческие ученые, когда пытались разложить природу вещей на составляющие: стихии, геометрические фигуры и даже атомы. На признаки повторяемости также обращают внимание и ученые современности. Например, Карл Линней на основе фенотипичного сходства смог выстроить систему живых существ.

Долгое время химия как наука оставалась без системы, которая могла бы упорядочить великое множество открытых веществ. Знания древних алхимиков дали богатейший материал для построения такой системы. Многие учёные предпринимали попытки выстроить гармоничную схему, но все попытки оказались тщетными. Так было вплоть до 1869 года, когда великий русский химик Дмитрий Иванович Менделеев представил миру своё детище – периодическую таблицу химических элементов. Говорят, что таблица приснилась учёному. Во сне он увидел, как таблица выстроилась в виде змеи и обвилась вокруг его ног. Достоверность этого факта сомнительна , но как бы то ни было, это был настоящий прорыв в науке.

Менделеев расположил элементы по мере возрастания их атомной массы. Этот принцип актуален и сейчас, правда, сейчас в основе лежит количество протонов и нейтронов в ядре.

Металлы и их отличительные свойства

Все химические элементы можно довольно условно поделить на металлы и неметаллы. Что же их отличает друг от друга? Как отличить металл от неметалла?

Из 118 открытых веществ 94 относят к группе металлов. Группа представлена разнообразными подгруппами:

Какие же признаки являются общими для всех металлов?

  1. Все металлы при комнатной температуре являют твёрдыми веществами. Это справедливо для всех элементов, кроме ртути, которая тверда до минус 39 градусов Цельсия. В комнатных условиях ртуть – это жидкость.
  2. Большинство из элементов этой группы имеют довольно высокую температуру плавления. Например, Вольфрам плавится при температуре 3410 градусов Цельсия. По этой причине его используют для изготовления нити в лампах накаливания.
  3. Все металлы пластичны. Это проявляется в том, что кристаллическая решетка металла позволяет атомам смещаться. В результате металлы могут гнуться без физической деформации, поддаются ковке. Особой пластичностью обладают медь, золото и серебро. Именно поэтому исторически они были первыми металлами, которые обрабатывал человек. Далее он научился обрабатывать железо.
  4. Все металлы очень хорошо проводят электричество, что опять же связано со строением металлической кристаллической решетки, имеющей подвижные электроны. Кроме всего прочего, эти элементы очень легко проводят тепло.
  5. Ну и, наконец, все металлы имеют характерный, ни с чем не сравнимый металлический блеск. Цвет чаще всего сероватой с голубым отливом. Au, Cu или Cs имеют желтый и красный оттенки.

Не пропустите: механизм образования , конкретные примеры.

Неметаллы

Все неметаллы расположены в правом верхнем углу периодической таблицы по диагонали, которую можно провести от водорода до астата и радона. Кстати говоря, водород при определенных условиях также может проявлять металлические свойства.

Основное отличие от металлов заключается в строении кристаллической решетки. Если у металлов кристаллическая решетка металлическая, то у неметаллов она может быть атомной или молекулярной. Молекулярной решеткой обладают некоторые газы – кислород, хлор, сера, азот. Вещества с атомной решеткой имеют твёрдое агрегатное состояние, относительно высокую температуру плавления.

Физические свойства неметаллов довольно разнообразны, неметаллы могут быть твердыми (йод, углерод, сера, фосфор), жидкими (только бром), газообразными (фтор, хлор, азот, кислород, водород) веществами с абсолютно разнообразным цветом. Агрегатное состояние может меняться под действием температуры.

С химической точки зрения, неметаллы могут выступать в роли окислителей и восстановителей. Неметаллы могут взаимодействовать между собой и с металлами. Кислород, к примеру, со всеми веществами выступает в роли окислителя, а вот с фтором выступает в роли восстановителя.

Аллотропия

Еще одно удивительное свойство неметаллов заключается в явлении, которое назвали аллотропией – видоизменение веществ, приводящее к различным аллотропным модификациям одного и того же химического элемента. С греческого можно перевести слово “аллотропия” как “другое свойство”. Так оно и есть.

Рассмотрим более подробно на примере списка некоторых простых веществ:

Модификации имеют и другие вещества – сера, селен, бор, мышьяк, бор, кремний, сурьма. При различных температурах многие металлы также обладают этими свойствами.

Конечно, деление всех простых веществ на группы металлов и неметаллов довольно условно. Это деление облегчает понимание свойств химических веществ, создает иллюзию их разделения на обособленные вещества. Как и все в мире, это деление относительное и зависит от внешних факторов окружающей среды – давления, температуры, света и т.д.

Дмитрий Менделеев смог создать уникальную таблицу химических элементов, главным достоинством которой была периодичность. Металлы и неметаллы в таблице Менделеева располагаются так, что их свойства изменяются периодическим образом.

Периодическая система была составлена Дмитрием Менделеевым во второй половине 19 века. Открытие не только позволило упростить работу химиков, она смогла объединить в себе как в единой системе все открытые химические вещества, а также предсказать будущие открытия.

Создание данной структурированной системы бесценно для науки и для человечества в целом. Именно это открытие дало толчок развитию всей химии на долгие годы.

Интересно знать ! Существует легенда, что готовая система привиделась ученому во сне.

В интервью одному журналисту ученый объяснил, что работал над ней 25 лет и то, что она ему снилась – вполне естественно, но это не значит, что во сне пришли все ответы.

Созданная Менделеевым система делится на две части:

  • периоды – столбики по горизонтали в одну или две строки (ряды);
  • группы – вертикальные строчки, в один ряд.

Всего в системе 7 периодов, каждый следующий элемент отличен от предыдущего большим количеством электронов в ядре, т.е. заряд ядра каждого правого показателя больше левого на единицу. Каждый период начинается с металла, а заканчивается инертным газом – именно это и есть периодичность таблицы, ведь свойства соединений меняются внутри одного периода и повторяются в следующем . При этом, следует помнить, что 1-3 периоды неполные или малые, в них всего 2, 8 и 8 представителей. В полном периоде (т.е. оставшихся четырех) по 18 химических представителей.

В группе располагаются химические соединения с одинаковой высшей , т.е. у них одинаковое электронное строение. Всего в системе представлено 18 групп (полная версия), каждая из которых начинается щелочью и заканчивается инертным газом. Все, представленные в системе субстанции, можно разделить на две основные группы – металл или неметалл.

Для облегчения поиска группы имеют свое название, а металлические свойства субстанций усиливаются с каждой нижней строчкой, т.е. чем ниже соединение, тем больше у него будет атомных орбит и тем слабее электронные связи. Также меняется и кристаллическая решетка – она становится ярко выраженной у элементов с большим количеством атомных орбит.

В химии используют три вида таблиц:

  1. Короткая – актиноиды и лантаноиды вынесены за границы основного поля, а 4 и все последующие периоды занимают по 2 строчки.
  2. Длинная – в ней актиноиды и лантаноиды вынесены за границу основного поля.
  3. Сверхдлинная – каждый период занимает ровно 1 строку.

Главной считается та таблица Менделеева, которая была принята и подтверждена официально, но для удобства чаще используют короткую версию. Металлы и неметаллы в таблице Менделеева располагаются согласно строгим правилам, которые облегчают работу с ней.

Металлы в таблице Менделеева

В системе Менделеева сплавы имеют преобладающее число и список их весьма велик – они начинаются с Бора (В) и заканчиваются полонием (Po) (исключением являются германий (Ge) и сурьма (Sb)). У этой группы есть характерные признаки, они разделены на группы, но их свойства при этом неоднородны. Характерные их признаки:

  • пластичность;
  • электропроводимость;
  • блеск;
  • легкая отдача электронов;
  • ковкость;
  • теплопроводность;
  • твердость (кроме ртути).

Из-за различной химической и физической сути свойства могут существенно отличаться у двух представителей этой группы, не все они похожи на типичные природные сплавы, к примеру, ртуть – это жидкая субстанция, но относится к данной группе.

В обычном своем состоянии она жидкая и без кристаллической решетки, которая играет ключевую роль в сплавах. Только химические характеристики роднят ртуть с данной группой элементов, несмотря на условность свойств этих органических соединений. То же самое касается и цезия – самого мягкого сплава, но он не может в природе существовать в чистом виде.

Некоторые элементы такого типа могут существовать только доли секунды, а некоторые не встречаются в природе совсем – их создали в искусственных условиях лаборатории. У каждой из групп металлов в системе есть свое название и признаки, которые отличают их от других групп.

При этом отличия у них весьма существенные. В периодической системе все металлы располагаются по количеству электронов в ядре, т.е. по увеличению атомной массы. При этом для них характерно периодическое изменение характерных свойств. Из-за этого в таблице они не размещаются аккуратно, а могут стоять неправильно.

В первой группе щелочей нет веществ, которые бы встречались в чистом виде в природе – они могут пребывать только в составе различных соединений.

Как отличить металл от неметалла?

Как определить металл в соединении? Существует простой способ определения, но для этого необходимо иметь линейку и таблицу Менделеева. Для определения надо:

  1. Провести условную линию по местам соединения элементов от Бора до Полония (можно до Астата).
  2. Все материалы, которые будут слева линии и в побочных подгруппах – металл.
  3. Вещества справа – другого типа.

Однако у способа есть изъян – он не включает в группу Германий и Сурьму и работает только в длинной таблице. Метод можно использовать в качестве шпаргалки, но чтобы точно определить вещество, следует запомнить список всех неметаллов. Сколько их всего? Мало – всего 22 вещества.

В любом случае, для определения природы вещества необходимо рассматривать его в отдельности. Легко будет элементы, если знать их свойства. Важно запомнить, что все металлы:

  1. При комнатной температуре – твердые, за исключением ртути. При этом они блестят и хорошо проводят электрический ток.
  2. У них на внешнем уровне ядра меньшее количество атомов.
  3. Состоят из кристаллической решетки (кроме ртути), а все другие элементы имеют молекулярную или ионную структуру.
  4. В периодической системе все неметаллы – красного цвета, металлы – черного и зеленого.
  5. Если двигаться слева направо в периоде, то заряд ядра вещества будет увеличиваться.
  6. У некоторых веществ свойства выражены слабо, но они все равно имеют характерные признаки. Такие элементы относятся к полуметаллам, например Полоний или Сурьма, они обычно располагаются на границе двух групп.

Внимание! В левой нижней части блока в системе всегда стоят типичные металлы, а в правой верхней — типичные газы и жидкости.

Важно запомнить, что при перемещении в таблице сверху вниз становятся сильнее неметаллические свойства веществ, поскольку там располагаются элементы, которые имеют отдаленные внешние оболочки . Их ядро отделено от электронов и поэтому они притягиваются слабее.

Полезное видео

Подведем итоги

Отличить элементы будет просто, если знать основные принципы формирования таблицы Менделеева и свойства металлов. Полезно будет также запомнить и список остальных 22 элементов. Но не нужно забывать, что любой элемент в соединении следует рассматривать в отдельности, не учитывая его связей с другими веществами.

Инструкция

Возьмите таблицу Менделеева, и с помощью линейки проведите линию, которая начинается в клетке с элементом Be (Бериллий), а заканчивается в клетке с элементом At (Астат).

Те элементы, которые будут находиться слева от этой линии – металлы. Причем чем «ниже и левее» находится элемент – тем более ярко выраженные металлические свойства он имеет. Легко убедиться, что в таблице Менделеева таким металлом является (Fr) – самый активный щелочной металл.

Соответственно, те элементы, которые справа от линии, имеют свойства . И здесь тоже действует аналогичное правило: чем «выше и правее» от линии находится элемент, тем более сильным неметаллом он является. Таким элементом в таблице Менделеева является фтор (F), сильнейший окислитель. Он настолько активен, что химики раньше давали ему уважительное, хоть и неофициальное, : «Все разгрызающий».

Могут возникнуть вопросы типа «А как же быть с теми элементами, которые находятся на самой линии или очень близко к ней?». Или, например, ««Справа и сверху» от линии находятся хром, . Неужели это неметаллы? Ведь их используют при производстве стали в качестве легирующих добавок. А ведь известно, что даже малые примеси неметаллов делают хрупкими». Дело в том, что элементы, расположенные на самой линии (например, алюминий, германий, ниобий, сурьма), имеют , то есть двойственный характер.

А что касается, например, ванадия, хрома, марганца, то свойства их соединений зависят от того, какую степень окисления имеют атомы этих элементов. Например, такие их высшие оксиды, как V2O5, CrO3, Mn2O7, имеют ярко выраженные . Именно поэтому они и располагаются на вроде бы «нелогичных» местах в таблице Менделеева. В «чистом» же виде эти элементы, безусловно, являются металлами и обладают всеми свойствами металлов.

Источники:

  • металлы в таблице менделеева

Для школьников изучение таблицы Менделеева - страшный сон. Даже тридцать шесть элементов, которые обычно задают преподаватели, оборачиваются часами изнурительной зубрежки и головной болью. Многие даже не верят, что выучить таблицу Менделеева реально. Но применение мнемотехники способно значительно облегчить жизнь школярам.

Инструкция

Разобраться в теории и выбрать нужную техникуПравила, облегчающие запоминание материала, мнемоническими. Главная их хитрость - создание ассоциативных связей, когда абстрактная информация упаковывается в яркую картинку, звук или даже запах. Существует несколько мнемонических техник. Например, можно написать рассказ из элементов запоминаемой информации, поискать созвучные слова (рубидий - рубильник, цезий - Юлий Цезарь), включить пространственное воображение или просто зарифмовать элементы периодической таблицы Менделеева.

Баллада об азотеРифмовать элементы периодической таблицы Менделеева лучше со смыслом, по определенным признакам: по валентности, например. Так, щелочные рифмуются очень легко и звучат, как песенка: "Литий, калий, натрий, рубидий, цезий франций". "Магний, кальций, цинк и барий - их валентность равна паре" - неувядающая классика школьного фольклора. На ту же тему: "Натрий, калий, серебро - одновалентное добро" и "Натрий, калий и аргентум - одновалентны". Творчество в отличие от зубрежки, которой хватает максимум на пару дней, стимулирует долговременную память. А значит, больше про алюминий, стихов про азот и песен о валентности - и запоминание пойдет как по маслу.

Кислотный триллерДля облегчения запоминания придумывается , в которой элементы таблицы Менделеева превращаются в героев, детали пейзажа или сюжетные элементы. Вот, например, всем известный текст: «Азиат (Азот) стал лить (Литий) воду (Водород)в сосновый Бор (Бор). Но Не он (Неон) был нам нужен, а Магнолия (Магний)». Его можно дополнить историей о феррари (железо - феррум), в которой ехал секретный агент "Хлор ноль семнадцать" (17 - порядковый номер хлора), чтобы поймать маньяка Арсения (мышьяк - арсеникум), у которого было 33 зуба (33 - порядковый номер мышьяка), но что-то кислое попало ему в рот (кислород), это было восемь отравленных пуль (8 - порядковый номер кислорода)... Продолжать можно до бесконечности. Кстати, роман, написанный по мотивам таблицы Менделеева, можно пристроить учительнице литературы в качестве экспериментального текста. Ей наверняка понравится.

Построить дворец памятиЭто одно из названий довольно эффективной техники запоминания, когда включается пространственное мышление. Секрет ее в том, что все мы можем без труда описать свою комнату или путь от дома до магазина, школы, . Для того, последовательность элементов нужно разместить их по дороге (или в комнате), причем представить каждый элемент очень ясно, зримо, ощутимо. Вот - худосочный блондин с вытянутым лицом. Работяга, который кладет плитку - кремний. Группа аристократов в дорогой машине - инертные газы. И, конечно, воздушных шариков - гелий.

Обратите внимание

Не нужно заставлять себя запоминать информацию на карточках. Самое лучшее связать каждый элемент с неким ярким образом. Кремний - с Кремниевой долиной. Литий - с литиевыми батарейками в мобильном телефоне. Вариантов может быть множество. Но комбинация визуального образа, механического запоминания, тактильного ощущения от шероховатой или, наоборот, гладкой глянцевой карточки, поможет без труда поднять самые мельчайшие детали из недр памяти.

Полезный совет

Можно нарисовать такие же карточки с информацией об элементах, как были в свое время у Менделеева, но только дополнить их современной информацией: количеством электронов на внешнем уровне, например. Все, что нужно, это раскладывать их перед сном.

Источники:

  • Мнемонические правила по химии
  • как запомнить таблицу менделеева

Проблема определения далеко не праздная. Едва ли будет приятно, если в ювелирном магазине вместо дорогой золотой вещицы вам захотят подсунуть откровенную подделку. А разве не представляет интереса, из какого металла сделана вышедшая из строя автомобильная деталь или найденный предмет старины?

Инструкция

Вот, к примеру, как определяется наличие меди в сплаве. Нанесите на очищенную поверхность металла каплю (1:1) азотной кислоты. В результате реакции начнет выделяться газ. Спустя несколько секунд промокните капельку фильтровальной бумагой, после чего подержите ее над , где находится концентрированный раствор аммиака. Медь прореагирует, окрасив пятно в темно-голубой цвет.

А вот как отличить бронзу от латуни. Кусочек металлической стружки или опилки поместите в мензурку с 10 мл раствора (1:1) азотной кислоты и накройте ее стеклом. Немного подождите, чтобы полностью растворился, и затем нагревайте полученную жидкость почти до кипения в течение 10-12 минут. О бронзе напомнит белый осадок, а мензурка с латунью останется .

Никель вы можете определить почти таким же способом, как и медь. Каплю раствора азотной кислоты (1:1) нанесите на поверхность металла и подождите 10-15 секунд. Промокните каплю фильтровальной бумагой и затем подержите ее над парами концентрированного аммиака. На образовавшееся темно- пятно капните 1% раствором диметилглиоксина на спирту.

Никель «просигнализирует» вам характерным красным цветом. Свинец можно определить с помощью кристалликов хромовой кислоты и нанесенной на него капельки охлажденной уксусной кислоты и спустя минуту – капли воды. Если вы увидите желтый осадок, знайте, что это хромат свинца.

Отлейте в отдельную емкость немного исследуемой жидкости и капните чуть-чуть раствора ляписа. При этом мгновенно выпадет «творожистый» белый осадок нерастворимого хлорида серебра. То есть хлорид-ион в составе молекулы вещества точно есть. Но, может быть, это все-таки не , а раствор какой-то хлорсодержащей соли? Например, хлорида натрия?

Вспомните еще одно свойство кислот. Сильные кислоты (а к их числу, безусловно, относится и соляная) могут вытеснять слабые кислоты из их . Поместите в колбу или лабораторный стакан немного порошка соды – Na2CO3 и потихоньку приливайте исследуемую жидкость. Если сразу же раздастся шипение и порошок буквально «вскипит» - никаких сомнений уже не останется - это соляная кислота.

Каждому элементу в таблице присвоен определенный порядковый номер (H - 1, Li - 2, Be - 3 и т.д.). Этот номер соответствует ядра (количеству протонов в ядре) и числу электронов, вращающихся вокруг ядра. Число протонов, таким образом, равно числу электронов, и это говорит о том, что в обычных условиях атом электрически .

Деление на семь периодов происходит по числу энергетических уровней атома. Атомы первого периода имеют одноуровневую электронную оболочку, второго - двухуровневую, третьего - трехуровневую и т.д. При заполнении нового энергетического уровня начинается новый период.

Первые элементы всякого периода характеризуются атомами, имеющими по одному электрону на внешнем уровне, - это атомы щелочных металлов. Заканчиваются периоды атомами благородных газов, имеющими полностью заполненный электронами внешний энергетический уровень: в первом периоде инертные газы имеют 2 электрона, в последующих - 8. Именно по причине похожего строения электронных оболочек группы элементов имеют сходные физико- .

В таблице Д.И. Менделеева присутствует 8 главных подгрупп. Такое их количество обусловлено максимально возможным числом электронов на энергетическом уровне.

Внизу периодической системы выделены лантаноиды и актиноиды в качестве самостоятельных рядов.

С помощью таблицы Д.И. Менделеева можно пронаблюдать периодичность следующих свойств элементов: радиуса атома, объема атома; потенциала ионизации; силы сродства с электроном; электроотрицательности атома; ; физических свойств потенциальных соединений.

Четко прослеживаемая периодичность расположения элементов в таблице Д.И. Менделеева рационально объясняется последовательным характером заполнения электронами энергетических уровней.

Источники:

  • Таблица Менделеева

Периодический закон, являющийся основой современной химии и объясняющий закономерности изменения свойств химических элементов, был открыт Д.И. Менделеевым в 1869 году. Физический смысл этого закона вскрывается при изучении сложного строения атома.

В XIX веке считалось, что атомная масса является главной характеристикой элемента, поэтому для классификации веществ использовали именно ее. Сейчас атомы определяют и идентифицируют по величине заряда их ядра (числу и порядковому номеру в таблице Менделеева). Впрочем, атомная масса элементов за некоторыми исключениями (например, атомная масса меньше атомной массы аргона) увеличивается соразмерно их заряду ядра.

При увеличении атомной массы наблюдается периодическое изменение свойств элементов и их соединений. Это металличность и неметалличность атомов, атомный радиус , потенциал ионизации, сродство к электрону, электроотрицательность, степени окисления, соединений (температуры кипения, плавления, плотность), их основность, амфотерность или кислотность.

Сколько элементов в современной таблице Менделеева

Таблица Менделеева графически выражает открытый им закон. В современной периодической системе содержится 112 химических элементов (последние – Мейтнерий, Дармштадтий, Рентгений и Коперниций). По последним данным, открыты и следующие 8 элементов (до 120 включительно), но не все из них получили свои названия, и эти элементы пока еще мало в каких печатных изданиях присутствуют.

Каждый элемент занимает определенную клетку в периодической системе и имеет свой порядковый номер, соответствующий заряду ядра его атома.

Как построена периодическая система

Структура периодической системы представлена семью периодами, десятью рядами и восемью группами. Каждый период начинается щелочным металлом и заканчивается благородным газом. Исключения составляют первый период, начинающийся водородом, и седьмой незавершенный период.

Периоды делятся на малые и большие. Малые периоды (первый, второй, третий) состоят из одного горизонтального ряда, большие (четвертый, пятый, шестой) – из двух горизонтальных рядов. Верхние ряды в больших периодах называются четными, нижние – нечетными.

В шестом периоде таблицы после (порядковый номер 57) находятся 14 элементов, похожих по свойствам на лантан, – лантаноидов. Они вынесены в нижнюю часть таблицы отдельной строкой. То же самое относится и к актиноидам, расположенным после актиния (с номером 89) и во многом повторяющим его свойства.

Четные ряды больших периодов (4, 6, 8, 10) заполнены только металлами.

Элементы в группах проявляют одинаковую высшую в оксидах и других соединениях, и эта валентность соответствует номеру группы. Главные вмещают в себя элементы малых и больших периодов, – только больших. Сверху вниз усиливаются, неметаллические – ослабевают. Все атомы побочных подгрупп – металлы.

Таблица периодических химических элементов стала одним из важнейших событий в истории науки и принесла своему создателю, российскому ученому Дмитрию Менделееву, мировую славу. Этот неординарный человек сумел объединить в единую концепцию все химические элементы, но как же ему удалось открыть свою знаменитую таблицу?

Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.

Периодическая система химических элементов Д. И. Менделеева

На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.

В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.

Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).

The YouTube ID of 1M7iKKVnPJE is invalid.

Периодический закон

Существуют две формулировки периодического закона химических элементов: классическая и современная.

Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов .

Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера) .

Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.

Группы и периоды Периодической системы

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом - 32, а в седьмом (пока незавершенном) - 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.

Свойства таблицы Менделеева

Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R 2 O, RO, R 2 O 3 , RO 2 , R 2 O 5 , RO 3 , R 2 O 7 , RO 4 , где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R 2 O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO 2 , R 2 O 5 , RO 3 , R 2 O 7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH 4 , RH 3 , RH 2 , RH.

Соединения RH 4 имеют нейтральный характер; RH 3 - слабоосновный; RH 2 - слабокислый; RH - сильнокислый характер.

Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В пределах периода с увеличением порядкового номера элемента:

  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус падает.

Элементы таблицы Менделеева

Щелочные и щелочноземельные элементы

К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы - мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию. Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.

Показать / Скрыть текст

Лантаниды (редкоземельные элементы) и актиниды

Лантаниды - это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы. Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов. Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.

Показать / Скрыть текст

Галогены и благородные газы

Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке. В благородных газах все электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е. ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.

Показать / Скрыть текст

Переходные металлы

Переходные металлы занимают группы 3-12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.

Показать / Скрыть текст

Переходные металлы
Скандий Sc 21
Титан Ti 22
Ванадий V 23
Хром Cr 24
Марганец Mn 25
Железо Fe 26
Кобальт Co 27
Никель Ni 28
Медь Cu 29
Цинк Zn 30
Иттрий Y 39
Цирконий Zr 40
Ниобий Nb 41
Молибден Mo 42
Технеций Tc 43
Рутений Ru 44
Родий Rh 45
Палладий Pd 46
Серебро Ag 47
Кадмий Cd 48
Лютеций Lu 71
Гафний Hf 72
Тантал Ta 73
Вольфрам W 74
Рений Re 75
Осмий Os 76
Иридий Ir 77
Платина Pt 78
Золото Au 79
Ртуть Hg 80
Лоуренсий Lr 103
Резерфордий Rf 104
Дубний Db 105
Сиборгий Sg 106
Борий Bh 107
Хассий Hs 108
Мейтнерий Mt 109
Дармштадтий Ds 110
Рентгений Rg 111
Коперниций Cn 112

Металлоиды

Металлоиды занимают группы 13-16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.

Показать / Скрыть текст

Постпереходными металлами

Элементы, называемые постпереходными металлами , относятся к группам 13-15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску. В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке. Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.

Флеровий Fl 114 Унунсептий Uus 117

А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.

Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.

Свойства химических элементов позволяют объединять их в соответствующие группы. На этом принципе была создана периодическая система, изменившая представление о существующих веществах и позволившая предположить существование новых, ранее неизвестных элементов.

Вконтакте

Периодическая система Менделеева

Периодическая таблица химических элементов была составлена Д. И. Менделеевым во второй половине XIX века. Что такое это, и для чего она нужна? Она объединяет все химические элементы по возрастанию атомного веса, причем, все они расставлены так, что их свойства изменяются периодическим образом.

Периодическая система Менделеева в свела в единую систему все существующие элементы, прежде считавшиеся просто отдельными веществами.

На основании ее изучения были предсказаны, а впоследствии - синтезированы новые химические вещества. Значение этого открытия для науки невозможно переоценить , оно значительно опередило свое время и дало толчок к развитию химии на многие десятилетия.

Существует три наиболее распространенных варианта таблицы, которые условно именуются «короткая», «длинная» и «сверхдлинная». Основной считается длинная таблица, она утверждена официально. Отличием между ними является компоновка элементов и длина периодов.

Что такое период

Система содержит 7 периодов . Они представлены графически в виде горизонтальных строк. При этом, период может иметь одну или две строки, называемые рядами. Каждый последующий элемент отличается от предыдущего возрастанием заряда ядра (количества электронов) на единицу.

Если не усложнять, период - это горизонтальная строка периодической таблицы. Каждый из них начинается металлом и заканчивается инертным газом. Собственно, это и создает периодичность - свойства элементов изменяются внутри одного периода, вновь повторяясь в следующем. Первый, второй и третий периоды - неполные, они называются малыми и содержат соответственно 2, 8 и 8 элементов. Остальные - полные, они имеют по 18 элементов.

Что такое группа

Группа - это вертикальный столбец , содержащий элементы с одинаковым электронным строением или, говоря проще, с одинаковой высшей . Официально утвержденная длинная таблица содержит 18 групп, которые начинаются со щелочных металлов и заканчиваются инертными газами.

Каждая группа имеет свое название, облегчающее поиск или классификацию элементов. Усиливаются металлические свойства в независимости от элемента по направлению сверху-вниз. Это связано с увеличением количества атомных орбит — чем их больше, тем слабее электронные связи, что делает более ярко выраженной кристаллическую решетку.

Металлы в периодической таблице

Металлы в таблице Менделеева имеют преобладающее количество, список их достаточно обширен. Они характеризуются общими признаками, по свойствам они неоднородны и делятся на группы. Некоторые из них имеют мало общего с металлами в физическом смысле, а иные могут существовать только доли секунды и в природе абсолютно не встречаются (по крайней мере, на планете ), поскольку созданы, точнее, вычислены и подтверждены в лабораторных условиях, искусственно. Каждая группа имеет собственные признаки , название и довольно заметно отличается от других. Особенно это различие выражено у первой группы.

Положение металлов

Какого положение металлов в периодической системе? Элементы расположены по увеличению атомной массы или количества электронов и протонов. Их свойства изменяются периодически, поэтому аккуратного размещения по принципу «один к одному» в таблице нет. Как определить металлы, и возможно ли это сделать по таблице Менделеева? Для того, чтобы упростить вопрос, придуман специальный прием: условно по местам соединения элементов проводится диагональная линия от Бора до Полония (или до Астата). Те, что оказываются слева - металлы, справа - неметаллы. Это было бы очень просто и здорово, но есть исключения - Германий и Сурьма.

Такая «методика» - своего рода шпаргалка, она придумана лишь для упрощения процесса запоминания. Для более точного представления следует запомнить, что список неметаллов составляет всего 22 элемента, поэтому отвечая на вопрос, сколько всего металлов всего содержится в таблице Менделеева

На рисунке можно наглядно увидеть, какие элементы являются неметаллами и как они располагаются в таблице по группам и периодам.

Общие физические свойства

Существуют общие физические свойства металлов. К ним относятся:

  • Пластичность.
  • Характерный блеск.
  • Электропроводность.
  • Высокая теплопроводность.
  • Все, кроме ртути, находятся в твердом состоянии.

Следует понимать, что свойства металлов очень различаются относительно их химической или физической сути. Некоторые из них мало похожи на металлы в обыденном понимании этого термина. Например, ртуть занимает особенное положение. Она при обычных условиях находится в жидком состоянии, не имеет кристаллической решетки, наличию которой обязаны своими свойствами другие металлы. Свойства последних в этом случае условны, с ними ртуть роднят в большей степени химические характеристики.

Интересно! Элементы первой группы, щелочные металлы, в чистом виде не встречаются, находясь в составе различных соединений.

Самый мягкий металл, существующий в природе - цезий - относится к этой группе. Он, как и другие щелочные подобные вещества, мало общего имеет с более типичными металлами. Некоторые источники утверждают, что на самом деле, самый мягкий металл калий, что сложно оспорить или подтвердить, поскольку ни тот, ни другой элемент не существует сам по себе — будучи выделенным в результате химической реакци они быстро окисляются или вступают в реакцию.

Вторая группа металлов - щелочноземельные - намного ближе к основным группам. Название «щелочноземельные» происходит из древних времен, когда окислы назывались «землями», поскольку они имеют рыхлую рассыпчатую структуру. Более-менее привычными (в обиходном смысле) свойствами обладают металлы начиная с 3 группы. С увеличением номера группы количество металлов убывает


Top