Функциональная характеристика гладких мышц физиология. Физиологические особенности гладких мышц. Функции скелетных и гладких мышц

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Однако они играют различную модуляторную роль в мембранном потенциале и находятся под агонистической спецификой, не зависящей от глобального. Саркоплазматические ретикулумрианодиновые рецепторкальциевые каналы мембранный потенциалэндотелин-1. Поэтому они действуют как модуляторы отрицательной обратной связи мембранного потенциала, а не прямые активаторы миофиламентов и сократительного аппарата. Вторичное и третье поколение внутрилегочных артерий выделяли и очищали без соединительной ткани.

Выделение желудочковых миоцитов

Эндотелий удаляли, осторожно протирая поверхность просвета ватным тампоном. Миоциты диспергировали осторожным перемешиванием и хранили при комнатной температуре перед использованием. Фотообесцвечивание и лазерное повреждение клеток были сведены к минимуму за счет ослабления лазера до ~ 1% от его максимальной мощности с помощью акустооптического настраиваемого фильтра. Для каждой ячейки было взято всего 10 изображений.

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".


Физиология мышц классификация мышечных волокон

Функции скелетных и гладких мышц

Режимы сокращения мышц

Измерение мембранного потенциала

Все эксперименты проводились при комнатной температуре. Частота искры каждой ячейки определялась как количество искры, обнаруженное в секунду в строке развертки. На некоторых изображениях значительное увеличение глобальной или кластеризации искр оказывало отдельные искры неразличимыми. Общая частота искры составляла 30 ± 04 с -1, ~ 75% ниже, чем в сердечных миоцитах.

Сердечные искры имели более широкий диапазон распределения амплитуды. Из-за негауссовского распределения амплитуды искры применялся непараметрический анализ. Размер как легочных, так и сердечных искр показал видимые модальные распределения, которые можно было бы адекватно описать с помощью одной гауссовой функции, о чем свидетельствует тест с двумя образцами Колмогорова-Смирнова.

Виды сокращений

Строение мышцы

Функциональные особенности гладких мышц


Физиология, мышц классификация мышечных волокон


Мышечные волокна делят на 3 вида: скелетные, сердечные и гладкие.

Скелетные волокна подразделяются на фазные (они генерируют ПД) и тонические (не способны генерировать полноценный потенциал действия распространяющегося типа). Фазные волокна делятся на быстрые волокна (белые, гликолитические) и медленные волокна (красные, окислительные волокна).

Кофеин вызвал значительное увеличение частоты искры от 30 ± 04 с -1 до 07 ± 21 с -1. Кофеин не изменял амплитуду искры, но значительно продлевал продолжительность и размер искр. Увеличение частоты искры, вызванное кофеином, полностью блокировалось 10 мкМ рианодином.

Электрохимический этап мышечного сокращения

Размер искры также слегка увеличился на 20 мМ К с 85 ± 07 до 02 ± 04 мкм. В интактных брыжеечных артериях регистрируется несколько более высокая частота искры. Напротив, амплитуды искры являются переменными среди различных типов клеток гладкой мускулатуры.

Гладкие мышцы делятся на тонические и фазнотонические. Тонические волокна не способны развивать "быстрые" сокращения. В свою очередь фазнотонические мышцы можно условно разделить на обладающие автоматией - способные к спонтанной генерации фазных сокращений, и на мышцы, не обладающие свойством автоматии.

Основным морфо - функциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ). ДЕ - это мотонейрон с иннервируемыми им мышечными волокнами. Аксон мотонейрона из спинного мозга проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка заканчивается на одном мышечном волокне, образуя нервно-мышечный синапс. Импульсы, идущие по аксону мотонейрона, активируют все иннервируемые им мышечные волокна. Поэтому ДЕ функционирует как единое морфофункциональное образование.

Наши результаты свидетельствуют о том, что, несмотря на сходство в их основных свойствах, физиологические функции искры Са 2 могут различаться при легочных и системных сосудистых миоцитах. Однако они могут способствовать легочной сосудистой реактивности при активной вазоконстрикции. Мы обнаружили, что пространственные и временные свойства этих искр аналогичны тем, которые наблюдаются в системных сосудистых клетках гладкой мускулатуры. Однако их правила и функции, по-видимому, различны и могут играть определенную роль в контроле реактивности легочной сосудов.


Функции скелетных и гладких мышц


Скелетные мышцы составляют 40% от массы тела и выполняют ряд важных функций:

1 - передвижение тела в пространстве, 2 - перемещение частей тела относительно друг друга, 3 - поддержание позы, 4 - передвижение крови и лимфы, 5 - выработка тепла, 6 - участие в акте вдоха и выдоха, 7 - двигательная активность как важнейший антиэнтропийный и антистрессовый фактор (тезисы "движение - это жизнь" или "кто много двигается, тот много живет" - имеют реальную материальную основу), 8 - депонирование воды и солен, 9 - защита внутренних органов (например, органов брюшной полости).

Физиологические особенности гладких мышц

Расходы на публикацию этой статьи частично покрывались оплатой сборов за страницу. Связь возбуждения с сокращением в плавной мышце. Деполяризация мембран может происходить через несколько механизмов. Рисунок 3: Общая схема связи между возбуждением и сжатием в миоците дыхательных путей. Фосфорилированный миозин может связываться с актином с образованием фосфорилированного моста актомиозина.

Физиология, мышц классификация мышечных волокон

Миозин, связанный или несвязанный с актином, дефосфорилируется легкой фосфатазой легкой цепи миозина. Мост актомиозина, либо фосфорилированный, либо нет, соответствует сокращению, тогда как миозин, не связанный с актином, соответствует релаксации. Каналами, управляемыми рецепторами, являются ионные каналы, открытие которых инициируется фиксацией агониста на его рецепторе независимо от изменений мембранного потенциала. Это важный физиологический механизм бронхоконстрикции, поскольку различные агонисты, включая основной физиологический бронхоконстриктор ацетилхолина и гистамина, действуют через такой механизм, так называемую фармакомеханическую связь.

Гладкие мышцы обеспечивают функцию полых органов, стенки которых они образуют. В частности, благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишки, желудка, желчного пузыря, матки. Гладкие мышцы обеспечивают сфинктерную функцию - создают условия для хранения содержимого полого органа в этом органе, например, мочу в мочевом пузыре, плод в матке. Важнейшую роль выполняют гладкие мышцы в системе кровообращения и лимфообращения - изменяя просвет сосудов, гладкие мышцы тем самым адаптируют регионарный кровоток к местным потребностям в кислороде, питательных веществах. Гладкие мышцы могут существенно влиять на функцию связочного аппарата, т.к содержатся во многих связках и при своем сокращении меняют состояние данной связочной структуры. Например, ГМК (гладкомышечные клетки) содержатся в широкой связке матки.

Рисунок 4: Общая схема внутриклеточных механизмов холинергической и адренергической стимуляции миоцитов дыхательных путей. Большие изменения размеров при проглатывании и опустошении желудка желудка связаны с большими изменениями длины гладкой мускулатуры. Эти изменения длины могут вызывать исторические эффекты, а именно подавлять депрессию после активного сокращения мышц и усиления силы после активного растяжения мышц. Оба эффекта оказывают влияние на силовую способность желудка и, следовательно, функциональную значимость.

Тем не менее, меньше известно об исторических эффектах и ​​активных гладкомышечных свойствах гладкой мускулатуры желудка. Таким образом, целью этого исследования было исследование биомеханических свойств мышц как отношений длины и силы скорости полостей гладкой мускулатуры свиного желудка, расширенных анализом исторических эффектов на гладкомышечную силу. При электрической стимуляции мышц выполнялись различные изометрические, изотонические и изокинетические протоколы сокращения. Поперечные участки гладких мышц определяли из криогистологических срезов, окрашенных пикоризиусом красным.


Режимы сокращения мышц


Для скелетной мышцы характерны два основных режима сокращения - изометрический и изотонический. Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз) - она не укорачивается. Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом мышца укорачивается - меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза. Так как изотоническое сокращение не является "чисто" изотоническим (элементы изометрического сокращения имеют место в самом начале сокращения мышцы), а изометрическое сокращение тоже не является "чисто" изотоническим (элементы смещения все-таки есть, несомненно), то предложено употреблять термин "ауксотоническое сокращение" - смешанное по характеру.

Впервые в этом исследовании представлен полный набор параметров гладкой мышцы живота, включая классические биомеханические свойства мышц и зависящие от истории эффекты, предлагая возможность для разработки и проверки вычислительных моделей желудка. Кроме того, этот набор данных облегчает новые взгляды на моторику желудка и сократительное поведение, основанное на переоценке существующих сократительных механизмов.

Это, вероятно, поможет понять физиологические функции или дисфункции с точки зрения размещения желудка и опорожнения. Гладкая мускулатура расположена в стенках различных полых органов, таких как мочевой пузырь, кишечник и желудок; транспортируя несколько веществ путем сокращения мышц. Желудок является частью желудочно-кишечного тракта, соединяющий пищевод с двенадцатиперстной кишкой, в основном выступая в качестве зоны смешивания и удерживающего резервуара.

Понятия "изотонический", "изометрический" важны для анализа сократительной активности изолированных мышц и для понимания биомеханики сердца.

Режимы сокращения гладких мышц. Целесообразно выделить изометрический и изотонический режимы (и, как промежуточный - ауксотонический). Например, когда мышечная стенка полого органа начинает сокращаться, а орган содержит жидкость, выход для которой перекрыт сфинктером, то возникает ситуация изометрического режима: давление внутри полого органа растет, а размеры ГМК не меняются (жидкость не сжимается). Если это давление станет высоким и приведет к открытию сфинктера, то ГМК переходит в изотонический режим функционирования - происходит изгнание жидкости, т.е. размеры ГМК уменьшаются, а напряжение или сила - сохраняется постоянной и достаточной для изгнания жидкости.

Чтобы обеспечить вариабельность функций гладкой желудочной мышцы, необходима элегантная корректировка различных типов сокращений - тонизирующее и перистальтическое сужение - поведение. Чтобы лучше понять подвижность и функцию желудка, необходимы знания о влиянии длины мышц, скорости, уровня активации и зависимых от истории эффектов на гладкую мышечную силу. Из-за структурной и механической подобия свиньи к желудку человека, исследование желудков у свиней имеет особое значение. Однако соответствующие исследования, изучающие активные и пассивные свойства мышц, редки.


Виды сокращений


У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение, или тетанус. Одиночное сокращение - это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы. После короткого скрытого периода (латентный период) начинается процесс сокращения. При регистрации сократительной активности в изометрических условиях (два конца неподвижно закреплены) в первую фазу происходит нарастание напряжения (силы), а во вторую - ее падение до исходной величины. Соответственно эти фазы называют фазой напряжения и фазой расслабления. При регистрации сократительной активности в изотоническом режиме (например, в условиях обычной миографической записи) эти фазы будут называться соответственно фазой укорочения и фазой удлинения. В среднем сократительный цикл длится около 200 мс (мышцы лягушки) или 30-80 мс (у теплокровных). Если на мышцу действует серия прямых раздражении (минуя нерв) или непрямых раздражении (через нерв), но с большим интервалом, при котором всякое следующее раздражение попадает в период после окончания 2-й фазы, то мышца будет на каждый из этих раздражителей отвечать одиночным сокращением.

Влияние зависимых от истории эффектов на мышечную силу желудка представляет особый интерес для развития функционального понимания перистальтического режима работы. Например, усилие усиливается в изометрической фазе после активного растяжения на 100% и уменьшается при подавлении активной укороченной силы на 20% по сравнению с соответствующей изометрической мышечной силой.

Следовательно, целью этого исследования было определение и анализ биомеханических свойств мышц интактной, активированной гладкой мышечной ткани из желудка свиней. Для этого исследования были выбраны свежие свиные желудки из-за их структурного и механического сходства с желудком человека. Желуди были взяты из 41 свежезаваренной свиньи местной скотобойни.

Суммированные сокращения возникают в том случае, если на мышцу наносятся 2 и более раздражения, причем всякое последующее раздражение (после предыдущего) наносится либо во время 2-й фазы (расслабления или удлинения), либо во время 1-й фазы (укорочения или напряжения).



В случае, когда всякое второе раздражение попадает в период фазы расслабления (удлинения), возникает частичная суммация - сокращение еще полностью не закончилось, а уже возникло новое. Если подается много раздражителей с подобным интервалом, то возникает явление зубчатого тетануса. Если раздражители наносятся с меньшим интервалом и каждое последующее раздражение попадает в фазу укорочения, то возникает так называемый гладкий тетанус.

Вкратце, сразу же после смерти предварительно определенный кусок гладкой желудочной ткани был вскрыт от вентрального дна проксимального желудка и отделен от слизистой оболочки. Была предпринята осторожность, чтобы предотвратить контакт полоски ткани с желудочной кислотой, чтобы избежать дегенерации гладких мышц.

Репрезентативная картина свиного желудка. Брюшной взгляд на внешнюю анатомию желудка свиньи. кардии, дна, корпуса, антрума, пилора, большей кривизны, меньшей кривизны. Черный прямоугольник показывает продольную мускульную полоску, рассеченную от дна. Продольное направление отмечено черной стрелкой.


Строение мышцы


Скелетная мышца состоит из пучков вытянутых в длину клеток - мышечных волокон, обладающих тремя свойствами: возбудимостью, проводимостью и сократимостью. Отличительной чертой мышечных клеток от клеток, не обладающих свойством сократимости, является наличие саркоплазматического ретикулума. Он представляет собой замкнутую систему внутриклеточных трубочек и цистерн, окружающих каждую миофибриллу. В мембране саркоплазматического ретикулума находятся две транспортные системы, обеспечивающие освобождение от ретикулума ионов кальция при возбуждении и их возврат из миоплазмы обратно в ретикулум при расслаблении мышцы. В механизме освобождения ионов кальция из ретикулума при возбуждении мышечной клетки важную роль играет система поперечных трубочек (Т-система), представляющих собой выпячивания поверхностной мембраны мышечного волокна.

Зажим был прикреплен к двухрежимной рычажной системе. Начальная пассивная базовая сила 5-10 мН была установлена ​​с помощью испытательного устройства, а длина полосы ткани при этой силе, измеренная между зажимом и крючками с цифровым скользящим суппортом, определялась как длина провисания.

Средняя длина прокола составляла 42 ± 42 мм. Полоски ткани были электрически стимулированы чередующимися импульсами 1 А, частотой 100 Гц и шириной импульса 5 мс. Все механические эксперименты проводились при постоянной температуре 32 ± 1 ° С в аэрированном растворе Кребса. При этой температуре образцы тканей оказались очень стабильными и способны выдерживать активные протоколы в течение длительного периода времени.

Мышечные волокна имеют диаметр от 10 до 100 мкм и длину от 5 до 400 мм (в зависимости от длины мышцы). В каждом мышечном волокне содержится до 1000 и более сократительных элементов миофибрилл, толщиной 1-3 мкм. Каждая миофибрилла состоит из множества параллельно лежащих толстых и тонких нитей - миофиламентов. Толстые нити состоят из молекул белка миозина, а тонкие - из белка актина.

Определение свойств гладкой мышечной ткани

На каждой длине пассивная и максимальная активная мышечная сила определялись как максимальное значение силы и пассивная сила в момент активации мышцы соответственно. Изокинетические пандусы начинались после периода предварительной стимуляции при полной активации до достижения максимальной максимальной изометрической силы, характеризующейся развитием плато. Стимуляция продолжалась не менее 14 с после окончания пандуса.

Функции поперечно-полосатых мышц

Все эксперименты по рампе проводились в рандомизированном порядке. «Велосипедный протокол» использовался для сохранения структурных и механических свойств в максимально активных гладких желудочных полосах в течение длительного периода времени, а также для уменьшения неоднородностей длины перекрывающихся миофиламентов. Рассмотрение различных параметров рампы последовало за псевдослучайной конструкцией блока. Приложенная скорость рампы и длина рампы нормированы на максимальную скорость укорачивания и оптимальную длину мышц соответственно.

Расположение миозиновых и тонких актиновых белковых нитей строга упорядочено (рис.4.1). Пучок лежащих в середине саркомера нитей миозина выглядит в световом микроскопе как темная полоска. Благодаря свойству двойного лучепреломления в поляризованном свете (то есть анизотропии) она называется А-диском. По обе стороны от А-диска находятся участки, которые содержат только тонкие нити актина и поэтому выглядят светлыми. Эти изотропные J-диски тянутся до Z-пластин. Благодаря такому периодическому чередованию светлых и темных полос миофибриллы скелетной мышцы выглядят исчерченными (поперечно - полосатыми). Если мышца расслаблена, то в средней части А-диска различается менее плотная Н-зона, состоящая только из толстых миофиламентов. Н-зона не просматривается во время сокращения мышцы. По середине J-диска проходит темная полоска - это Z линия. Участок миофибриллы между двумя Z линиями называется саркомером.

Нижняя трасса иллюстрирует фиксированный протокол мышечных сокращений, состоящий из экспериментов по изокинетическим рампам и изометрических эталонных сокращений. Во время экспериментов с изокинетическими рампами изометрическая сила при последовательных активациях уменьшалась со средней скоростью 1% на активацию.

Данные о препаратах, которые вызывали изометрическую силу. Гистологическое исследование проводилось в соответствии с процедурой, ранее описанной и реализованной на образцах той же ткани-области, которые были использованы для динамического определения параметров в настоящем исследовании. Чтобы исследовать площади поперечного сечения мышц в продольном направлении, среднюю длину и ширину отдельных выборочных полос определяли с помощью программного обеспечения для редактирования изображений.

Схема саркомера мышечного волокна и взаимного расположения толстых миозиновых и тонких актиновых миофиламентов.


Z - линии, разделяющие два соседних саркомера; J - изотропный диск; А - анизотропный диск; Н - участок с уменьшенной анизотропностью


Механизмы сокращения мышечного волокна. В покоящихся мышечных волокнах при отсутствии импульсации мотонейрона поперечные миозиновые мостики не прикреплены к актиновым миофиламентам.

При сокращении мышцы длина А-дисков не меняется, J - диски укорачиваются, а Н-зона А-дисков может исчезать (рис.4.3). Эти данные явились основой для создания теории, объясняющей сокращение мышцы механизмом скольжения (теорией скольжения) тонких актиновых миофиламентов вдоль толстых миозиновых. В результате этого миозиновые миофиламенты втягиваются между окружающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.

Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазматического ретикулума и освобождение из них ионов кальция. Свободные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция их саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называют "электромеханическим сопряжением". Временная последовательность между возникновением потенциала действия мышечного волокна, поступлением ионов кальция к миофибриллам и развитием сокращения волокна показана на рисунке.



Схема сокращения мышцы

А. Поперечные мостики между актином и миозином разомкнуты. Мышца находится в расслабленном состоянии. Б. Замыкание поперечных мостиков между актином и миозином. Совершение головками мостиков гребковых движений по направлению к центру саркомера. Скольжение актиновых нитей вдоль миозиновых, укорочение саркомера, развитие тяги.


Схема временной последовательности развития возбуждения и сокращения мышцы


При возбуждении волокна Са+2 выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са молекула тропонина изменяет свою форму таким образом, что выталкивает тропомиозин в желобок между двумя нитями актина, освобождая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают "гребковые" движения в сторону центра саркомера происходит "втягивание" актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.

Источником энергии для сокращения мышечных волокон служит АТФ.

При однократном движении поперечных мостиков вдоль актиновых нитей (гребковых движениях) саркомер укорачивается примерно на 1% его длины. Следовательно, для полного изотонического сокращения мышцы необходимо совершить около 50 таких гребковых движений. Только ритмическое прикрепление и отсоединение головок миозина может втянуть нити актина вдоль миозиновых и совершить требуемое укорочение целой мышцы. Напряжение, развиваемое мышечным волокном, зависит от числа одновременно замкнутых поперечных мостиков. Скорость развития напряжения или укорочения волокна определяется частотой замыкания поперечных мостиков, образуемых в единицу времени, то есть скоростью их прикрепления к актиновым миофиламентам. С увеличением скорости укорочения мышцы число одновременно прикрепленных поперечных мостиков в каждый момент времени уменьшается. Этим и можно объяснить уменьшение силы сокращения мышцы с увеличением скорости ее укорочения.

Поскольку возврат ионов кальция в цистерны саркоплазматического ретикулума идет против диффузионного градиента, то этот процесс требует затрат энергии. Ее источником служит АТФ. Одна молекула АТФ затрачивается на возврат 2-х ионов кальция из межфибриллярного пространства в цистерны. Таким образом, кальций в мышечных волокнах играет роль внутриклеточного посредника, связывающего процессы возбуждения и сокращения.

Регуляция силы сокращения мышц. Для регуляции величины напряжения мышцы центральная нервная система использует три механизма.

1. Регуляция числа активных ДЕ. Чем больше число ДЕ мышцы включается в работу, тем большее напряжение она развивает. При необходимости развития небольших усилий и соответственно малой импульсации со стороны центральных нервных структур, регулирующих произвольные движения, в работу включаются, прежде всего, медленные ДЕ, мотонейроны, которые имеют наименьший порог возбуждения. По мере усиления центральной импульсации к работе подключаются быстрые, устойчивые к утомлению ДЕ, мотонейроны которых имеют более высокий порог возбуждения. И наконец, при необходимости увеличения силы сокращения более 20-25% от максимальной произвольной силы (МП С), активируются быстрые, легко утомляемые мышечные волокна, иннервируемые крупными мотонейронами с самым высоким порогом возбуждения.

Таким образом, первый механизм увеличения силы сокращения состоит в том, что при необходимости повысить величину напряжения мышцы в работу вовлекается большее количество ДЕ. Последовательность включения разных по морфофункциональным признакам ДЕ определяется интенсивностью центральных возбуждающих влияний и порогом возбудимости спинальных двигательных нейронов.

2. Регуляция частоты импульсации мотонейронов. При слабых сокращениях скелетных мышц импульсация мотонейронов составляет 5 - 10 имп/с. Для каждой отдельной ДЕ чем выше (до определенного предела) частота возбуждающих импульсов, тем больше сила сокращения ее мышечных волокон и тем больше ее вклад в развиваемое всей мышцей усилие. С увеличением частоты раздражения мотонейронов все большее количество ДЕ начинает работать в режиме гладкого тетануса, увеличивая тем самым свою силу по сравнению с одиночными сокращениями в 2-3 раза. В реальных условиях мышечной деятельности человека большая часть ДЕ активируется в диапазоне от 0 до 50% МПС. Лишь около 10% ДЕ вовлекаются с дальнейшим возрастанием силы сокращения. Следовательно, при увеличении силы сокращения более 50% от максимальной - основное значение, а в диапазоне сил от 75 до 100% МПС - даже исключительное, принадлежит росту частоты импульсации двигательных нейронов.

3. Синхронизация активности различных ДЕ во времени. При сокращении мышцы всегда активируется множество составляющих ее ДЕ. Суммарный механический эффект при этом зависит от того, как связаны во времени импульсы, посылаемые разными мотонейронами к своим мышечным волокнам. При небольших напряжениях большинство ДЕ работают несинхронно. Совпадение во времени импульсов мотонейронов отдельных ДЕ называется синхронизацией.

Чем большее количество ДЕ работает синхронно, тем большую силу развивает мышца.

Синхронизация активности ДЕ играет важную роль в начале любого сокращения и при необходимости выполнения мощных, быстрых сокращений (прыжки, метания и т.п.). Чем больше совпадают периоды сокращения разных ДЕ, тем с большей скоростью нарастает напряжения всей мышцы и тем большей величины достигает амплитуда ее сокращения.


Функциональные особенности гладких мышц


Гладкие мышцы находятся в стенках внутренних органов и кровеносных сосудов. Регуляция их тонуса и сократительной активности осуществляется эфферентными волокнами симпатической и парасимпатической нервной системы, а также местными гуморальными и физическими воздействиями.

Сократительный аппарат гладких мышц, как и скелетных, состоит из толстых миозиновых и тонких актиновых нитей. Вследствие их нерегулярного распределения клетки гладких мышц не имеют характерной для скелетной и сердечной мышцы поперечной исчерченности. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм и толщину 2-10 мкм. Они отделены друг от друга узкими щелями (60-150 нм). Возбуждение электротонически распространяется по мышце от клетки к клетке через особые плотные контакты (нексусы) между плазматическими мембранами соседних клеток.

Волокна гладких мышц сокращаются в результате относительного скольжения миозиновых и актиновых нитей, но скорость их сокращения и скорость расщепления АТФ в 100-1000 раз меньше, чем в скелетных мышцах. Поэтому гладкие мышцы хорошо приспособлены к длительному тоническому сокращению без развития утомления.

Гладкие мышцы, обладающие спонтанной активностью, способны сокращаться и при отсутствии прямых возбуждающих нервных и гуморальных воздействий (например, ритмические сокращения гладких мышц кишечника).

Спонтанная активность гладкомышечных клеток связана и с их растяжением, вызывающим деполяризацию мембраны мышечного волокна, возникновение серии распространяющихся потенциалов действия, с последующим сокращением клетки.

Гладкие мышцы, не обладающие спонтанной активностью сокращаются под влиянием импульсов вегетативной нервной системы. Так, в отличие от мышц кишечника, мышечные клетки артерий, семенных протоков и радужки обладают слабой спонтанной активностью, или вообще не проявляют ее. Отдельные нервные импульсы не способны вызвать пороговую деполяризацию таких клеток и их сокращение. Потенциал действия волокна с последующим сокращением возникает лишь при поступлении к нему серии импульсов с частотой 1 имп/с и выше. В гладких мышцах, не обладающих спонтанной активностью возбуждение также передается от одной клетки к последующим через плотные контакты их мембран (нексусы).

Подобно скелетной и сердечной мышцам гладкие мышцы расслабляются, если концентрация ионов кальция снижается ниже 10-8 моль/л. Однако в связи со слаборазвитым саркоплазматическим ретикулумом и медленным переносом ионов кальция через мембрану клетки, расслабление происходит гораздо медленнее, чем в случае поперечно-полосатых волокон скелетных мышц.

Похожие рефераты:

Механизм действия рефлекса, история его изучения, классификация и разновидности. Структура и назначение вегетативной, метасимпатической, симпатической, парасимпатической нервной системы, механизм управления ими. Деятельность высших вегетативных центров.

Шванновские клетки периферической нервной системы, восстановление поврежденных аксонов, специфичность реиннервации. Свойства нерва и мышцы после образования синапса чужим нервом. Синаптическая базальная мембрана, формирование синаптической специализации.

Протекание биохимических процессов, их причинно-следственный механизм. Натриево-калиевый насос, энергия гидролиза АТФ, кальциевые насосы, натрий-кальциевый обменник. Функции мембраны, электрический потенциал клетки и молекул, их роль в обменных процессах.

Функции и строение эпителия, регенерация его клеток. Типы соединительной ткани, преобладание межклеточного вещества над клетками. Химический состав и физические свойства межклеточного вещества. Костная, жировая, хрящевая, мышечная и нервная ткани.

Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Физиологической особенностью сердечной мышцы является ее автоматизм . Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

Конец работы -

Эта тема принадлежит разделу:

ЛЕКЦИЯ № 1

Нормальная физиология биологическая дисциплина изучающая... функции целостного организма и отдельных физиологических систем например... функции отдельных клеток и клеточных структур входящих в состав органов и тканей например роль миоцитов и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физиологическая характеристика возбудимых тканей
Основным свойством любой ткани является раздражимость, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раз

Законы раздражения возбудимых тканей
Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

Понятие о состоянии покоя и активности возбудимых тканей
О состоянии покояв возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный ур

Физико-химические механизмы возникновения потенциала покоя
Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает

Физико-химические механизмы возникновения потенциала действия
Потенциал действия– это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны

Высоковольтный пиковый потенциал (спайк).
Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз: 1) восходящей части – фазы деполяризации; 2) нисходящей части – фазы реполяриз

Физиология нервов и нервных волокон. Типы нервных волокон
Физиологические свойства нервных волокон: 1) возбудимость– способность приходить в состояние возбуждения в ответ на раздражение; 2) проводимость–

Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну
Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые. Процессы метаболизма в безмиелиновых волокнах не об

Закон изолированного проведения возбуждения.
Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нер

Физические и физиологические свойства скелетных, сердечной и гладких мышц
По морфологическим признакам выделяют три группы мышц: 1) поперечно-полосатые мышцы (скелетные мышцы); 2) гладкие мышцы; 3) сердечную мышцу (или миокард).

Электрохимический этап мышечного сокращения.
1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлени

Хемомеханический этап мышечного сокращения.
Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории: 1) ионы Ca запускают механизм мыш

ХР-ХЭ-ХР-ХЭ-ХР-ХЭ.
ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины. Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический п

Норадреналин, изонорадреналин, адреналин, гистамин являются как тормозными, так и возбуждающими.
АХ (ацетилхолин)является самым распространенным медиатором в ЦНС и в периферической нервной системе. Содержание АХ в различных структурах нервной системы неодинаково. С филогенетич

Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС
Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на поддержание постоянства свойств и состава внутренней среды организма

Нейрон. Оособенности строения, значение, виды
Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон. Нейрон – специализированная клетка, которая способна принимать, кодировать, передават

Рефлекторная дуга, ее компоненты, виды, функции
Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс– реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основ

Функциональные системы организма
Функциональная система– временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата. Полезный р

Координационная деятельность ЦНС
Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой. Функции КД: 1) обес

Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова
Торможение– активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет. Торможе

Методы изучения ЦНС
Существуют два большие группы методов изучения ЦНС: 1) экспериментальный метод, который проводится на животных; 2) клинический метод, который применим к человеку. К числу

Физиология спинного мозга
Спинной мозг – наиболее древнее образование ЦНС. Характерная особенность строения – сегментарность. Нейроны спинного мозга образуют его серое веществов ви

Структурные образования заднего мозга.
1. V–XII пара черепных нервов. 2. Вестибулярные ядра. 3. Ядра ретикулярной формации. Основные функции заднего мозга проводниковая и рефлекторная. Через задний мо

Физиология промежуточного мозга
В состав промежуточного мозга входят таламус и гипоталамус, они связывают ствол мозга с корой большого мозга. Таламус– парное образование, наиболее крупное скопление серог

Физиология ретикулярной формации и лимбической системы
Ретикулярная формация ствола мозга– скопление полиморфных нейронов по ходу ствола мозга. Физиологическая особенность нейронов ретикулярной формации: 1) самопроизв

Физиология коры больших полушарий
Высшим отделом ЦНС является кора больших полушарий, ее площадь составляет 2200 см2. Кора больших полушарий имеет пяти-, шестислойное строение. Нейроны представлены сенсорными, м

Совместная работа больших полушарий и их асимметрия.
Для совместной работы полушарий имеются морфологические предпосылки. Мозолистое тело осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким обра

Анатомические свойства
1. Трехкомпонентное очаговое расположение нервных центров. Низший уровень симпатического отдела представлен боковыми рогами с VII шейного по III–IV поясничные позвонки, а парасимпатического – крест

Физиологические свойства
1. Особенности функционирования вегетативных ганглиев. Наличие феномена мультипликации (одновременного протекания двух противоположных процессов – дивергенции и конвергенции). Дивергенция – расхожд

Функции симпатической, парасимпатической и метсимпатической видов нервной системы
Симпатическая нервная системаосуществляет иннервацию всех органов и тканей (стимулирует работу сердца, увеличивает просвет дыхательных путей, тормозит секреторную, моторную и всасы

Общие представления об эндокринных железах
Железы внутренней секреции– специализированные органы, не имеющие выводных протоков и выделяющие секрет в кровь, церебральную жидкость, лимфу через межклеточные щели. Эндо

Свойства гормонов, механизм их действия
Выделяют три основных свойства гормонов: 1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования); 2) строгую с

Синтез, секреция и выделение гормонов из организма
Биосинтез гормонов– цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокр

Регуляция деятельности эндокринных желез
Все процессы, происходящие в организме, имеют специфические механизмы регуляции. Один из уровней регуляции – внутриклеточный, действующий на уровне клетки. Как и многие многоступенчатые биохимическ

Гормоны передней доли гипофиза
Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз – с

Гормоны средней и задней долей гипофиза
В средней доле гипофиза вырабатывается гормон меланотропин(интермедин), который оказывает влияние на пигментный обмен. Задняя доля гипофиза тесно связана с супраоптическим

Гипоталамическая регуляция образования гормонов гипофиза
Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статина

Гормоны эпифиза, тимуса, паращитовидных желез
Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения: 1) мелатонин(принимает участие в регуляци

Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы
Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержащий бело

Гормоны поджелудочной железы. Нарушение функции поджелудочной железы
Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают

Нарушение функции поджелудочной железы.
Уменьшение секреции инсулина приводит к развитию сахарного диабета, основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), поли

Гормоны надпочечников. Глюкокортикоиды
Надпочечники – парные железы, расположенные над верхними полюсами почек. Они имеют важное жизненное значение. Различают два типа гормонов: гормоны коркового слоя и гормоны мозгового слоя.

Физиологическое значение глюкокортикоидов.
Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процесс образования глюкозы из белков, повышают отложение гликогена в печени, по своему действию являются антагонистами инсулина

Регуляция образования глюкокортикоидов.
Важную роль в образовании глюкокортикоидов играет кортикотропин передней доли гипофиза. Это влияние осуществляется по принципу прямых и обратных связей: кортикотропин повышает продукцию глюкокортик

Гормоны надпочечников. Минералокортикоиды. Половые гормоны
Минералокортикоиды образуются в клубочковой зоне коры надпочечников и принимают участие в регуляции минерального обмена. К ним относятся альдостерони дезоксикортикостерон

Регуляция образования минералокортикоидов
Регуляция секрета и образования альдостерона осуществляется системой «ренин-ангиотензин». Ренин образуется в специальных клетках юкстагломерулярного аппарата афферентных артериол почки и выделяется

Значение адреналина и норадреналина
Адреналин выполняет функцию гормона, он поступает в кровь постоянно, при различных состояниях организма (кровопотере, стрессе, мышечной деятельности) происходит увеличение его образования и выделен

Половые гормоны. Менструальный цикл
Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые непосредств

Менструальный цикл включает четыре периода.
1. Предовуляционный (с пятого по четырнадцатый день). Изменения обусловлены действием фоллитропина, в яичниках происходит усиленное образование эстрогенов, они стимулируют рост матки, разрастание с

Гормоны плаценты. Понятие о тканевых гормонах и антигормонах
Плацента – уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух гру

Понятие о высшей и низшей нервной деятельности
Низшая нервная деятельность представляет собой интегративную функцию спинного и ствола головного мозга, которая направлена на регуляцию вегетативно-висцеральных рефлексов. С ее помощью обеспечивают

Образование условных рефлексов
Для образования условных рефлексов необходимы определенные условия. 1. Наличие двух раздражителей – индифферентного и безусловного. Это связано с тем, что адекватный раздражитель вызовет б

Торможение условных рефлексов. Понятие о динамическом стереотипе
В основе этого процесса лежат два механизма: безусловное (внешнее) и условное (внутреннее) торможение. Безусловное торможение возникает мгновенно вследствие прекращения ус

Понятие о типах нервной системы
Тип нервной системы напрямую зависит от интенсивности процессов торможения и возбуждения и условий, необходимых для их выработки. Тип нервной системы– это совокупность процессов, п

Понятие о сигнальных системах. Этапы образования сигнальных систем
Сигнальная система– набор условно-рефлекторных связей организма с окружающей средой, который впоследствии служит основой для формирования высшей нервной деятельности. По времени об

Компоненты системы кровообращения. Круги кровообращения
Система кровообращения состоит из четырех компонентов: сердца, кровеносных сосудов, органов – депо крови, механизмов регуляции. Система кровообращения является составляющим компонентом сер

Морфофункциональные особенности сердца
Сердце является четырехкамерным органом, состоящим из двух предсердий, двух желудочков и двух ушек предсердий. Именно с сокращения предсердий и начинается работа сердца. Масса сердца у взрослого че

Физиология миокарда. Проводящая система миокарда. Свойства атипического миокарда
Миокард представлен поперечно-полосатой мышечной тканью, состоящей из отдельных клеток – кардиомиоцитов, соединенных между собой с помощью нексусов, и образующих мышечное волокно миокарда. Таким об

Автоматия сердца
Автоматия– это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы

Энергетическое обеспечение миокарда
Для работы сердца как насоса необходимо достаточное количество энергии. Процесс обеспечения энергией складывается из трех этапов: 1) образования; 2) транспорта;

АТФ-АДФ-трансферазы и креатинфосфокиназы
АТФ путем активного транспорта при участии фермента АТФ-АДФ-трансферазы переносится на наружную поверхность мембраны митохондрий и с помощью активного центра креатинфосфокиназы и ионов Mg доставляю

Коронарный кровоток, его особенности
Для полноценной работы миокарда необходимо достаточное поступление кислорода, которое обеспечивают коронарные артерии. Они начинаются у основания дуги аорты. Правая коронарная артерия кровоснабжает

Рефлекторные влияния на деятельность сердца
За двустороннюю связь сердца с ЦНС отвечают так называемые кардиальные рефлексы. В настоящее время выделяют три рефлекторных влияния – собственные, сопряженные, неспецифические. Собственны

Нервная регуляция деятельности сердца
Нервная регуляция характеризуется рядом особенностей. 1. Нервная система оказывает пусковое и корригирующее влияние на работу сердца, обеспечивая приспособление к потребностям организма.

Гуморальная регуляция деятельности сердца
Факторы гуморальной регуляции делят на две группы: 1) вещества системного действия; 2) вещества местного действия. К веществам системного действияотносят

Сосудистый тонус и его регуляция
Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным. Миогенный тонус возникает, когда некоторые гладкомышечные клетки сосудов начинают спонтанно генерировать нер

Функциональная система, поддерживающая на постоянном уровне величину кровяного давления
Функциональная система, поддерживающая на постоянном уровне величину кровяного давления, – временная совокупность органов и тканей, формирующаяся при отклонении показателей с целью

Гистогематический барьер и его физиологическая роль
Гистогематический барьер– это барьер между кровью и тканью. Впервые были обнаружены советскими физиологами в 1929 г. Морфологическим субстратом гистогематического барьера является

Сущность и значение процессов дыхания
Дыхание является наиболее древним процессом, с помощью которого осуществляется регенерация газового состава внутренней среды организма. В результате органы и ткани снабжаются кислородом, а отдают у

Аппарат внешнего дыхания. Значение компонентов
У человека внешнее дыхание осуществляется с помощью специального аппарата, основная функция которого заключается в обмене газов между организмом и внешней средой. Аппарат внешнего дыхания

Механизм вдоха и выдоха
У взрослого человека частота дыхания составляет примерно 16–18 дыхательных движений в минуту. Она зависит от интенсивности обменных процессов и газового состава крови. Дыхательный

Понятие о паттерне дыхания
Паттерн– совокупность временных и объемных характеристик дыхательного центра, таких как: 1) частота дыхания; 2) продолжительность дыхательного цикла; 3)

Физиологическая характеристика дыхательного центра
По современным представлениям дыхательный центр– это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют нес

Гуморальная регуляция нейронов дыхательного центра
Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым. Г. Фредерик провел

Нервная регуляция активности нейронов дыхательного центра
Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний – эпизодические и постоянные. К постоянным относятся три вида: 1) от периферических х

Гомеостаз. Биологические константы
Понятие о внутренней среде организма было введено в 1865 г. Клодом Бернаром. Она представляет собой совокупность жидкостей организма, омывающих все органы и ткани и принимающих участие в обменных п

Понятие о системе крови, ее функции и значение. Физико-химические свойства крови
Понятие системы крови было введено в 1830-х гг. Х. Лангом. Кровь – это физиологическая система, которая включает в себя: 1) периферическую (циркулирующую и депонированную) кровь;

Плазма крови, ее состав
Плазма составляет жидкую часть крови и является водно-солевым раствором белков. Состоит на 90–95 % из воды и на 8-10 % из сухого остатка. В состав сухого остатка входят неорганические и органически

Физиология эритроцитов
Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров де

Виды гемоглобина и его значение
Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержитс

Физиология лейкоцитов
Лейкоциты– ядросодержащие клетки крови, размеры которых от 4 до 20 мкм. Продолжительность их жизни сильно варьируется и составляет от 4–5 до 20 дней для гранулоцитов и до 100 дней

Физиология тромбоцитов
Тромбоциты– безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 × 109/л.

Иммунологические основы определения группы крови
Карл Ландштайнер обнаружил, что эритроциты одних людей склеиваются плазмой крови других людей. Ученый установил существование в эритроцитах особых антигенов – агглютиногенов и предположил наличие в

Антигенная система эритроцитов, иммунный конфликт
Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации. Антитела – это иммуноглобулины, образующиес

Структурные компоненты гемостаза
Гемостаз– сложная биологическая система приспособительных реакций, обеспечивающая сохранение жидкого состояния крови в сосудистом русле и остановку кровотечений из поврежденных сос

Функции системы гемостаза.
1. Поддержание крови в сосудистом русле в жидком состоянии. 2. Остановка кровотечения. 3. Опосредование межбелковых и межклеточных взаимодействий. 4. Опсоническая – очист

Механизмы образования тромбоцитарного и коагуляционного тромба
Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах, где имеются низкое кровяное давление и малый просвет сосудов. Остановка кровотечения может прои

Факторы свертывания крови
В процессе свертывания крови принимают участие много факторов, они называются факторами свертывания крови, содержатся в плазме крови, форменных элементах и тканях. Плазменные факторы свертывания кр

Фазы свертывания крови
Свертывание крови– это сложный ферментативный, цепной (каскадный), матричный процесс, сущность которого состоит в переходе растворимого белка фибриногена в нерастворимый белок фибр

Физиология фибринолиза
Система фибринолиза– ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью п

Процесс фибринолиза проходит в три фазы.
Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

Почки выполняют в организме ряд функций.
1. Регулируют объем крови и внеклеточной жидкости (осуществляют волюморегуляцию), при увеличении объема крови волюморецепторы левого предсердия активируются: угнетается секреция антидиуретического

Строение нефрона
Нефрон– функциональная почечная единица, где происходит образование мочи. В состав нефрона входят: 1) почечное тельце (двустенная капсула клубочка, внутри

Механизм канальцевой реабсорбции
Реабсорбция– процесс обратного всасывания ценных для организма веществ из первичной мочи. В различных частях канальцев нефрона всасываются различные вещества. В проксимальном отдел

Понятие о системе пищеварения. Ее функции
Система пищеварения– сложная физиологическая система, обеспечивающая переваривание пищи, всасывание питательных компонентов и адаптацию этого процесса к условиям существования.

Типы пищеварения
Выделяют три типа пищеварения: 1) внеклеточное; 2) внутриклеточное; 3) мембранное. Внеклеточное пищеварение происходит за пределами клетки, кото

Секреторная функция системы пищеварения
Секреторная функция пищеварительных желез заключается в выделении в просвет желудочно-кишечного тракта секретов, принимающих участие в обработке пищи. Для их образования клетки должны получать опре

Моторная деятельность желудочно-кишечного тракта
Моторная деятельность представляет собой координированную работу гладких мышц желудочно-кишечного тракта и специальных скелетных мышц. Они лежат в три слоя и состоят из циркулярно расположенных мыш

Регуляция моторной деятельности желудочно-кишечного тракта
Особенностью моторной деятельности является способность некоторых клеток желудочно-кишечного тракта к ритмической спонтанной деполяризации. Это значит, что они могут ритмически возбуждаться. В резу

Механизм работы сфинктеров
Сфинктер– утолщение гладкомышечных слоев, за счет которых весь желудочно-кишечный тракт делится на определенные отделы. Существуют следующие сфинктеры: 1) кардиальный;

Физиология всасывания
Всасывание– процесс переноса питательных веществ из полости желудочно-кишечного тракта во внутреннюю среду организма – кровь и лимфу. Всасывание происходит на протяжении всего желу

Механизм всасывания воды и минеральных веществ
Всасывание осуществляется за счет физико-химический механизмов и физиологических закономерностей. В основе этого процесса лежат активный и пассивный виды транспорта. Большое значение имеет строение

Механизмы всасывания углеводов, жиров и белков
Всасывание углеводов происходит в виде конечных продуктов метаболизма (моно– и дисахаридов) в верхней трети тонкого кишечника. Глюкоза и галактоза поглощаются путем активного транспорта, причем вса

Механизмы регуляции процессов всасывания
Нормальная функция клеток слизистой оболочки желудочно-кишечного такта регулируется нейрогуморальными и местными механизмами. В тонком кишечнике основная роль принадлежит местному способу,

Физиология пищеварительного центра
Первые представления о строении и функциях пищевого центра были обобщены И. П. Павловым в 1911 г. По современным представлениям пищевой центр – это совокупность нейронов, расположенных на разных ур


Top