Набор хромосом. Что такое хромосома

Сначала договоримся о терминологии. Окончательно человеческие хромосомы посчитали чуть больше полувека назад — в 1956 году. С тех пор мы знаем, что в соматических , то есть не половых клетках, их обычно 46 штук — 23 пары.

Хромосомы в паре (одна получена от отца, другая — от матери) называют гомологичными . На них расположены гены, выполняющие одинаковые функции, однако нередко различающиеся по строению. Исключение составляют половые хромосомы — Х и Y, генный состав которых совпадает не полностью. Все остальные хромосомы, кроме половых, называют аутосомами .

Количество наборов гомологичных хромосом — плоидность — в половых клетках равно одному, а в соматических, как правило, двум.

У человека до сих пор В-хромосомы обнаружены не были. Зато иногда в клетках возникает дополнительный набор хромосом — тогда говорят о полиплоидии , а если их число не кратно 23 — об анеуплоидии. Полиплоидия встречается у отдельных типов клеток и способствует их усиленной работе, в то время как анеуплоидия обычно свидетельствует о нарушениях в работе клетки и нередко приводит к ее гибели.

Делиться надо честно

Чаще всего неправильное количество хромосом является следствием неудачного деления клеток. В соматических клетках после удвоения ДНК материнская хромосома и ее копия оказываются сцеплены вместе белками когезинами. Потом на их центральные части садятся белковые комплексы кинетохоры, к которым позже прикрепляются микротрубочки. При делении по микротрубочкам кинетохоры разъезжаются к разным полюсам клетки и тянут за собой хромосомы. Если сшивки между копиями хромосомы разрушатся раньше времени, то к ним могут прикрепиться микротрубочки от одного и того же полюса, и тогда одна из дочерних клеток получит лишнюю хромосому, а вторая останется обделенной.

Мейоз тоже нередко проходит с ошибками. Проблема в том, что конструкция из сцепленных двух пар гомологичных хромосом может перекручиваться в пространстве или разделяться в неположенных местах. Результатом снова будет неравномерное распределение хромосом. Иногда половой клетке удается это отследить, чтобы не передавать дефект по наследству. Лишние хромосомы часто неправильно уложены или разорваны, что запускает программу гибели. Например, среди сперматозоидов действует такой отбор по качеству. А вот яйцеклеткам повезло меньше. Все они у человека образуются еще до рождения, готовятся к делению, а потом замирают. Хромосомы уже удвоены, тетрады образованы, а деление отложено. В таком виде они живут до репродуктивного периода. Дальше яйцеклетки по очереди созревают, делятся первый раз и снова замирают. Второе деление происходит уже сразу после оплодотворения. И на этом этапе проконтролировать качество деления уже сложно. А риски больше, ведь четыре хромосомы в яйцеклетке остаются сшитыми в течение десятков лет. За это время в когезинах накапливаются поломки, и хромосомы могут спонтанно разделяться. Поэтому чем старше женщина, тем больше вероятность неправильного расхождения хромосом в яйцеклетке.

Анеуплоидия в половых клетках неизбежно ведет к анеуплоидии зародыша. При оплодотворении здоровой яйцеклетки с 23 хромосомами сперматозоидом с лишней или недостающей хромосомами (или наоборот) число хромосом у зиготы, очевидно, будет отлично от 46. Но даже если половые клетки здоровы, это не дает гарантий здорового развития. В первые дни после оплодотворения клетки зародыша активно делятся, чтобы быстро набрать клеточную массу. Судя по всему, в ходе быстрых делений нет времени проверять корректность расхождения хромосом, поэтому могут возникнуть анеуплоидные клетки. И если произойдет ошибка, то дальнейшая судьба зародыша зависит от того, в каком делении это случилось. Если равновесие нарушено уже в первом делении зиготы, то весь организм вырастет анеуплоидным. Если же проблема возникла позже, то исход определяется соотношением здоровых и аномальных клеток.

Часть последних может дальше погибнуть, и мы никогда не узнаем об их существовании. А может принять участие в развитии организма, и тогда он получится мозаичным — разные клетки будут нести разный генетический материал. Мозаицизм доставляет немало хлопот пренатальным диагностам. Например, при риске рождения ребенка с синдромом Дауна иногда извлекают одну или несколько клеток зародыша (на той стадии, когда это не должно представлять опасности) и считают в них хромосомы. Но если зародыш мозаичен, то такой метод становится не особенно эффективным.

Третий лишний

Все случаи анеуплоидии логично делятся на две группы: недостаток и избыток хромосом. Проблемы, возникающие при недостатке, вполне ожидаемы: минус одна хромосома означает минус сотни генов.

Если гомологичная хромосома работает нормально, то клетка может отделаться только недостаточным количеством закодированных там белков. Но если среди оставшихся на гомологичной хромосоме генов какие-то не работают, то соответствующих белков в клетке не появится совсем.

В случае избытка хромосом все не так очевидно. Генов становится больше, но здесь — увы — больше не значит лучше.

Во-первых, лишний генетический материал увеличивает нагрузку на ядро: дополнительную нить ДНК нужно разместить в ядре и обслужить системами считывания информации.

Ученые обнаружили , что у людей с синдромом Дауна, чьи клетки несут дополнительную 21-ю хромосому, в основном нарушается работа генов, находящихся на других хромосомах. Видимо, избыток ДНК в ядре приводит к тому, что белков, поддерживающих работу хромосом, не хватает на всех.

Во-вторых, нарушается баланс в количестве клеточных белков. Например, если за какой-то процесс в клетке отвечают белки-активаторы и белки-ингибиторы и их соотношение обычно зависит от внешних сигналов, то дополнительная доза одних или других приведет к тому, что клетка перестанет адекватно реагировать на внешний сигнал. И наконец, у анеуплоидной клетки растут шансы погибнуть. При удвоении ДНК перед делением неизбежно возникают ошибки, и клеточные белки системы репарации их распознают, чинят и запускают удвоение снова. Если хромосом слишком много, то белков не хватает, ошибки накапливаются и запускается апоптоз — программируемая гибель клетки. Но даже если клетка не погибает и делится, то результатом такого деления тоже, скорее всего, станут анеуплоиды.

Жить будете

Если даже в пределах одной клетки анеуплоидия чревата нарушениями работы и гибелью, то неудивительно, что целому анеуплоидному организму выжить непросто. На данный момент известно только три аутосомы — 13, 18 и 21-я, трисомия по которым (то есть лишняя, третья хромосома в клетках) как-то совместима с жизнью. Вероятно, это связано с тем, что они самые маленькие и несут меньше всего генов. При этом дети с трисомией по 13-й (синдром Патау) и 18-й (синдром Эдвардса) хромосомам доживают в лучшем случае до 10 лет, а чаще живут меньше года. И только трисомия по самой маленькой в геноме, 21-й хромосоме, известная как синдром Дауна, позволяет жить до 60 лет.

Совсем редко встречаются люди с общей полиплоидией. В норме полиплоидные клетки (несущие не две, а от четырех до 128 наборов хромосом) можно обнаружить в организме человека, например в печени или красном костном мозге. Это, как правило, большие клетки с усиленным синтезом белка, которым не требуется активное деление.

Дополнительный набор хромосом усложняет задачу их распределения по дочерним клеткам, поэтому полиплоидные зародыши, как правило, не выживают. Тем не менее описано около 10 случаев, когда дети с 92 хромосомами (тетраплоиды) появлялись на свет и жили от нескольких часов до нескольких лет. Впрочем, как и в случае других хромосомных аномалий, они отставали в развитии, в том числе и умственном. Однако многим людям с генетическими аномалиями приходит на помощь мозаицизм. Если аномалия развилась уже в ходе дробления зародыша, то некоторое количество клеток могут остаться здоровыми. В таких случаях тяжесть симптомов снижается, а продолжительность жизни растет.

Гендерные несправедливости

Однако есть и такие хромосомы, увеличение числа которых совместимо с жизнью человека или даже проходит незаметно. И это, как ни удивительно, половые хромосомы. Причиной тому — гендерная несправедливость: примерно у половины людей в нашей популяции (девочек) Х-хромосом в два раза больше, чем у других (мальчиков). При этом Х-хромосомы служат не только для определения пола, но и несут более 800 генов (то есть в два раза больше, чем лишняя 21-я хромосома, доставляющая немало хлопот организму). Но девочкам приходит на помощь естественный механизм устранения неравенства: одна из Х-хромосом инактивируется, скручивается и превращается в тельце Барра . В большинстве случаев выбор происходит случайно, и в ряде клеток в результате активна материнская Х-хромосома, а в других — отцовская. Таким образом, все девочки оказываются мозаичными, потому что в разных клетках работают разные копии генов. Классическим примером такой мозаичности являются черепаховые кошки : на их Х-хромосоме находится ген, отвечающий за меланин (пигмент, определяющий, среди прочего, цвет шерсти). В разных клетках работают разные копии, поэтому окраска получается пятнистой и не передается по наследству, так как инактивация происходит случайным образом.

В результате инактивации в клетках человека всегда работает только одна Х-хромосома. Этот механизм позволяет избежать серьезных неприятностей при Х-трисомии (девочки ХХХ) и синдромах Шерешевского — Тернера (девочки ХО) или Клайнфельтера (мальчики ХХY). Таким рождается примерно один из 400 детей, но жизненные функции в этих случаях обычно не нарушены существенно, и даже бесплодие возникает не всегда. Сложнее бывает тем, у кого хромосом больше трех. Обычно это значит, что хромосомы не разошлись дважды при образовании половых клеток. Случаи тетрасомии (ХХХХ, ХХYY, ХХХY, XYYY) и пентасомии (XXXXX, XXXXY, XXXYY, XXYYY, XYYYY) встречаются редко, некоторые из них описаны всего несколько раз за всю историю медицины. Все эти варианты совместимы с жизнью, и люди часто доживают до преклонных лет, при этом отклонения проявляются в аномальном развитии скелета, дефектах половых органов и снижении умственных способностей. Что характерно, дополнительная Y-хромосома сама по себе влияет на работу организма несильно. Многие мужчины c генотипом XYY даже не узнают о своей особенности. Это связано с тем, что Y-хромосома сильно меньше Х и почти не несет генов, влияющих на жизнеспособность.

У половых хромосом есть и еще одна интересная особенность. Многие мутации генов, расположенных на аутосомах, приводят к отклонениям в работе многих тканей и органов. В то же время большинство мутаций генов на половых хромосомах проявляется только в нарушении умственной деятельности. Получается, что в существенной степени половые хромосомы контролируют развитие мозга. На основании этого некоторые ученые высказывают гипотезу, что именно на них лежит ответственность за различия (впрочем, не до конца подтвержденные) между умственными способностями мужчин и женщин.

Кому выгодно быть неправильным

Несмотря на то что медицина знакома с хромосомными аномалиями давно, в последнее время анеуплоидия продолжает привлекать внимание ученых. Оказалось , что более 80% клеток опухолей содержат необычное количество хромосом. С одной стороны, причиной этому может служить тот факт, что белки, контролирующие качество деления, способны его затормозить. В опухолевых клетках часто мутируют эти самые белки-контролеры, поэтому снимаются ограничения на деление и не работает проверка хромосом. С другой стороны, ученые полагают , что это может служить фактором отбора опухолей на выживаемость. Согласно такой модели, клетки опухоли сначала становятся полиплоидными, а дальше в результате ошибок деления теряют разные хромосомы или их части. Получается целая популяция клеток с большим разнообразием хромосомных аномалий. Большинство из них нежизнеспособны, но некоторые могут случайно оказаться успешными, например если случайно получат дополнительные копии генов, запускающих деление, или потеряют гены, его подавляющие. Однако если дополнительно стимулировать накопление ошибок при делении, то клетки выживать не будут. На этом принципе основано действие таксола — распространенного лекарства от рака: он вызывает системное нерасхождение хромосом в клетках опухоли, которое должно запускать их программируемую гибель.

Получается, что каждый из нас может оказаться носителем лишних хромосом, по крайней мере в отдельных клетках. Однако современная наука продолжает разрабатывать стратегии борьбы с этими нежеланными пассажирами. Одна из них предлагает использовать белки, отвечающие за Х-хромосому, и натравить, например, на лишнюю 21-ю хромосому людей с синдромом Дауна. Сообщается , что на клеточных культурах этот механизм удалось привести в действие. Так что, возможно, в обозримом будущем опасные лишние хромосомы окажутся укрощены и обезврежены.

2. Хромосомный набор клетки

Важная роль в клеточном цикле принадлежит хромосомам. Хромосомы - носители наследственной информации клетки и организма, содержащиеся в ядре. Они не только осуществляют регуляцию всех обменных процессов в клетке, но и обеспечивают передачу наследственной информации от одного поколения клеток и организмов другому. Число хромосом соответствует числу молекул ДНК в клетке. Увеличение числа многих органоидов не требует точного контроля. Все содержимое клетки при делении распределяется более или менее равномерно между двумя дочерними клетками. Исключением являются хромосомы и молекулы ДНК: они должны удвоиться и совершенно точно распределиться между вновь образуемыми клетками.

Строение хромосом

Изучение хромосом эукариотических клеток показало, что они состоят из молекул ДНК и белка. Комплекс ДНК с белком называется хроматином. В прокариотной клетке содержится только одна кольцевая молекула ДНК, не связанная с белками. Поэтому, строго говоря, ее нельзя назвать хромосомой. Это нуклеоид.

Если бы удалось растянуть нить ДНК каждой хромосомы, то ее длина значительно превысила бы размер ядра. Важную роль в упаковке гигантских молекул ДНК играют ядерные белки - гистоны. Последние исследования структуры хромосом показали, что каждая молекула ДНК соединяется с группами ядерных белков, образуя множество повторяющихся структур - нуклеосом (рис. 2). Нуклеосомы являются структурными единицами хроматина, они плотно упакованы вместе и образуют единую структуру в виде спирали толщиной 36 нм.

Рис. 2. Строение интерфазной хромосомы: А - электронная фотография хроматиновых нитей; Б - нуклеосома, состоящая из белков - гистонов, вокруг которых располагается спирально закрученная молекула ДНК

Большинство хромосом в интерфазе растянуты в виде нитей и содержат большое количество деспирализованных участков, что делает их практически невидимыми в обычный световой микроскоп. Как уже было сказано выше, перед делением клетки молекулы ДНК удваиваются и каждая хромосома состоит из двух молекул ДНК, которые спирализуются, соединяются с белками и приобретают четкие формы. Две дочерние молекулы ДНК упаковываются порознь и образуют сестринские хроматиды. Сестринские хроматиды удерживаются вместе центромерой и образуют одну хромосому. Центромера - это участок сцепления двух сестринских хроматид, контролирующий движение хромосом к полюсам клетки во время деления. К этой части хромосом прикрепляются нити веретена деления.

Отдельные хромосомы различаются только в период деления клетки, когда они максимально плотно упакованы, хорошо окрашиваются и видны в световой микроскоп. В это время можно определить их количество в клетке, изучить общий вид. В каждой хромосоме выделяются плечи хромосом и центромера. В зависимости от положения центромеры различают три типа хромосом - равноплечные, разноплечные и одноплечные (рис. 3).

Рис. 3. Строение хромосомы. А - схема строения хромосомы: 1 - центромера; 2 - плечи хромосомы; 3 - сестринские хроматиды; 4 - молекулы ДНК; 5 - белковые компоненты; Б - виды хромосом: 1 - равноплечные; 2 - разноплечные; 3 - одноплечные

Хромосомный набор клеток

Клетки каждого организма содержат определенный набор хромосом, который называется кариотипом. Для каждого вида организмов характерен свой кариотип. Хромосомы каждого кариотипа отличаются по форме, - величине и набору генетической информации.

Кариотип человека, например, составляет 46 хромосом, плодовой мушки дрозофилы - 8 хромосом, одного из культурных видов пшеницы - 28. Хромосомный набор строго специфичен для каждого вида.

Исследования кариотипа различных организмов показали, что в клетках может содержаться одинарный и двойной набор хромосом. Двойной, или диплоидный (от греч. diploos - двойной и eidos - вид), набор хромосом характеризуется наличием парных хромосом, которые одинаковы по величине, форме и характеру наследственной информации. Парные хромосомы называются гомологичными (от греч. homois - одинаковый, подобный). Так, например, все соматические клетки человека содержат 23 пары хромосом, т. е. 46 хромосом представлены в виде 23 пар. У дрозофилы 8 хромосом образуют 4 пары. Парные гомологичные хромосомы внешне очень похожи. Их центромеры находятся в одних и тех же местах, а гены расположены в одинаковой последовательности.

Рис. 4. Наборы хромосом клеток: А - растения скерды, Б - комара, В - дрозофилы, Г - человека. Набор хромосом в половой клетке дрозофилы гаплоидный

В некоторых клетках или организмах может существовать одинарный набор хромосом, который называется гаплоидным (от греч. haploos - одиночный, простой и eidos - вид). Парные хромосомы в этом случае отсутствуют, т. е. гомологичных хромосом в клетке нет. Например, в клетках низших растений - водорослей набор хромосом гаплоидный, тогда как у высших растений и животных набор хромосом диплоидный. Однако в половых клетках всех организмов всегда содержится только гаплоидный набор хромосом.

Хромосомный набор клеток каждого организма и вида в целом строго специфичен и является его основной характеристикой. Хромосомный набор принято обозначать латинской буквой n. Диплоидный набор соответственно обозначается 2n, а гаплоидный - n. Количество молекул ДНК обозначается буквой c. В начале интерфазы число молекул ДНК соответствует числу хромосом и в диплоидной клетке равно 2c. Перед началом деления количество ДНК удваивается и равно 4c.

Вопросы для самоконтроля

1. Какое строение имеет интерфазная хромосома?

2. Почему в интерфазу невозможно увидеть хромосомы в микроскоп?

3. Как определяется количество и внешний вид хромосом?

4. Назовите основные части хромосомы.

5. Из скольких молекул ДНК состоит хромосома в предсинтетический период интерфазы и перед самым делением клетки?

6. За счет какого процесса изменяется количество молекул ДНК в клетке?

7. Какие хромосомы называются гомологичными?

8. По набору хромосом дрозофилы определите равноплечные, разноплечные и одноплечные хромосомы.

9. Что такое диплоидный и гаплоидный наборы хромосом? Как они обозначаются?

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Набор лекарства в шприц При наборе лекарства в шприц следует быть предельно внимательным. Еще раз необходимо прочитать назначение врача, сверить с надписями на ампуле, убедиться в прозрачности раствора и отсутствии в нем хлопьев.Ампулу можно отпилить пилочкой в

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Тесты по биологии. 6 класс автора Бенуж Елена

КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ. ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СТРОЕНИЯ КЛЕТКИ 1. Выберите один наиболее правильный ответ.Клетка – это:A. Мельчайшая частица всего живогоБ. Мельчайшая частица живого растенияB. Часть растенияГ. Искусственно созданная единица для

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Клетки-охранницы Говоря о той прогрессивной роли, которую сыграли первые наброски клеточной теории, нельзя не оговориться, что созданный ею образ «суверенных» клеток лишь в ограниченной степени приложим к организмам высших животных, хотя и здесь клетки подчас ведут

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Клетки-коллективисты и клетки-одиночки В основе тесной кооперации клеток, входящих в состав многоклеточного организма, лежат по меньшей мере две важнейшие причины. Во-первых, каждая отдельно взятая клетка, будучи сама по себе на редкость умелым и исполнительным

Из книги Проблемы лечебного голодания. Клинико-экспериментальные исследования [все четыре части!] автора Анохин Петр Кузьмич

Может ли набор хромосом преступника служить оправданием совершенного им преступления? Одним из нарушений со стороны половых хромосом является лишняя Y-хромосома в кариотипе (совокупности признаков хромосом, характерной для клеток тела организма того или иного вида)

Из книги Власть генов [прекрасна как Монро, умен как Эйнштейн] автора Хенгстшлегер Маркус

Хромосомный этап формирования пола Пол начинает определяться во время оплодотворения. В ядрах клеток человека одна пара хромосом различна у мужчин и женщин. У женщин эта пара под микроскопом похожа на две буквы X, а у мужчин – на буквы XY. Соответственно, эти хромосомы и

Из книги Гены и развитие организма автора Нейфах Александр Александрович

О действии полного длительного алиментарного голодания на хромосомный аппарат лимфоцитов периферической крови К. Н. ГРИНБЕРГ, Ю, Л. ШАПИРО, Е. А. КИРИЛОВА, Р. С. КУШНИР (Москва) Полное алиментарное голодание успешно применяется при лечении некоторых психических и

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

Одинаковый набор генов у разных людей Ну хорошо, если не имеет смысла отслеживать какое-то заболевание по всему семейному древу – что тогда? Научно обоснованный ответ на вопрос, что именно связано с генами, дает результат удивительного эксперимента природы. Человек –

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

2. Клетки крови Система кроветворения сложнее других систем с постоянным обновлением дифференцированных клеток. В этом случае нет такого простого пространственного разделения стволовых клеток, дифференцирующихся клеток и клеток, достигших терминальной

Из книги Размножение организмов автора Петросова Рената Арменаковна

Митохондриальная Ева и игрек-хромосомный Адам в африканском Эдеме Сравнительный анализ митохондриальной ДНК (мтДНК) и Y-хромосом современных людей показал, что все современное человечество происходит от небольшой популяции, жившей в Восточной Африке 160–200 тыс. лет

Из книги автора

Бессмертные клетки Рождение и смерть часто воспринимаются нами как две стороны одной медали. Одно явление якобы неотделимо от другого. Появление на свет неизбежно влечет за собой старение и кончину. Между тем это не совсем так. Живая клетка, как своеобразная молекулярная

Из книги автора

Ремонтный набор Ясно, что если бы у клеток не было защиты против таких нарушений ДНК, то вскоре многие гены были бы необратимо повреждены, что неизбежно приведет организм к полной катастрофе. Неудивительно поэтому, что любые клетки регулярно и постоянно занимаются

Из книги автора

3. Деление клетки Способность к делению - это важнейшее свойство клетки. В результате деления из одной клетки возникают две новые. Одно из основных свойств жизни - самовоспроизведение - проявляется уже на клеточном уровне. Наиболее распространенным способом деления

1. В зиготе диплоидный набор хромосом (2n), она образуется при слиянии гамет с гаплоидным набором хромосом (n).

2. В спорах гаплоидный набор хромосом (n), они образуются из зиготы с диплоидным набором хромосом (2n) путём мейоза.

мха

Гаметы – 1п (из гаплоидного гаметофита путем митоза)

Споры – 1п (из диплоидного спорофита путем мейоза)

мха

Гаметофит и гаметы гаплоидны 1п1с

Гаметы образуются на гаметоофите путем митоза

Гаметофит образуется из споры 1п(которая путем мейоза формируется из спорофита)путем митоза

папоротника

1. В клетках листьев папоротника диплоидный набор хромосом (2n), так они, как и всё растение, развиваются из зиготы с диплоидным набором хромосом (2n) путём митоза.

2. В клетках заростка гаплоидный набор хромосом (n), так как заросток образуется из гаплоидной споры (n) путём митоза.

плауна

сосны

В мякоти иголок – 2п, в спермиях -1п

Взрослое растение из зиготы 2п – митоз

Спермии из гаплоидных микроспор (1п) - митоз

сосны ? Объясните, из каких исходных клеток и в результате, какого деления образуются эти клетки.

1. В клетках пыльцевого зерна гаплоидный набор хромосом (n), так как оно образуется из гаплоидной микроспоры (n) путём митоза.

2. В спермиях гаплоидный набор хромосом (n), так как они образуются из генеративной клетки пыльцевого зерна с гаплоидным набором хромосом (n) путём митоза.

цветкового растения ? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

    Эпидермис – 2п (т.к. взрослое растение спорофит)

    зародышевый мешок -1п (гаметофит)

    спорофит образуется из клеток зародыша семени путем митоза. Гаметофит – митоз гаплоидной споры

цветкового растения . Объясните результат в каждом случае.

1) в клетках зародыша семени диплоидный набор хромосом – 2n, так как зародыш развивается из зиготы – оплодотворённой яйцеклетки;
2) в клетках эндосперма семени триплоидный набор хромосом – 3n, так как образуется при слиянии двух ядер центральной клетки семязачатка (2n) и одного спермия (n);
3) клетки листьев цветкового растения имеют диплоидный набор хромосом – 2n, так как взрослое растение развивается из зародыша.

Сперматогенез в зоне размножения. Митоз. Начало деления – 2п4с (8 хромосом и 16 ДНК) Конец зоны размножения (2п2с) – 8 хромосом и 8 ДНК.

Зона созревания (конец) – мейоз – 1п1с – 4 хромосомы и 4ДНК

1)Сперматогенез в зоне размножения. Митоз. Начало деления – 2п4с (78 хромосом и 156 ДНК) Конец зоны размножения (2п2с) – 78 хромосом и 78 ДНК.

2)Зона созревания (конец) – мейоз – 1п1с – 39 хромосомы и 39ДНК

3)зона размножение – митоз (сохранение набора и кол-ва ДНК)

4) зона созревания - мейоз

Диплоидный набор хромосом 2n2c

1) Перед началом мейоза в S-периоде интерфазы - удвоение ДНК: Профаза мейоза I – 2n4с

2) Первое деление редукционное. В мейоз 2 вступают 2 дочерние клетки с гаплоидным набором хромосом (n2c)

3) Метафаза мейоза II - хромосомы выстраиваются на экваторе n2с

1. В профазе первого деления количество хромосом и ДНК отвечает формуле 2п4с.

2. В профазе второго деления формула - п2с, так как клетка гаплоидна.

3. В профазе первого деления происходят конъюгация и кроссинговер гомологичных хромосом

Хромосомный набор в профазе 2n 4с, число ДНК 116*2=232

Метафаза: 2n 4c (116 хромосом и 232 ДНК)

Телофаза: 2n2c, (116 хромосом и 116 ДНК)

1. Клетка содержит 8 хромосом и 8 молекул ДНК. Это диплоидный набор.

2. Перед делением в интерфазе происходит удвоение молекул ДНК. 8 хромосом и 16 молекул ДНК.

3. Т.к. в анафазе I гомологичные хромосомы расходятся к полюсам клетки, то в телофазе I клетки делятся и образуют 2 гаплоидных ядра. 4 хромосомы и 8 молекул ДНК - каждая хромосома состоит из двух хроматид (ДНК) - редукционное деление.

II

1)перед началом деления в интерфазе молекулы ДНК удваиваются, их число увеличивается - 120, а число хромосом не изменяется - 60, каждая хромосома состоит из двух сестринских хроматид;

2) в анафазе мейоза I число хромосом - 60; число молекул ДНК - 120;

3) мейоз I - редукционное деление, поэтому число хромосом и число молекул ДНК уменьшается в 2 раза; в анафазе мейоза I I число хромосом - 30; число молекул ДНК - 60;

4) конец деления - мейоз I I - митотическое деление, поэтому число хромосом не меняется, а число молекул ДНК уменьшается в 2 раза (30 хромосом и 30 ДНК)

1) Эндосперм цветковых растений имеет триплоидный набор хромосом (3п), значит, число хромосом в одинарном наборе (п) равно 7хромосомам. Перед началом мейоза хромосомный набор в клетках двойной(2п) из 14 хромосом, в интерфазе происходит удвоение молекул ДНК, поэтому число молекул ДНК- 28 (4с).
2) В первом делении мейоза расходятся гомологичные хромосомы, состоящие из двух хроматид, поэтому в конце телофазы мейоза 1 хромосомный набор в клетках одинарный (п) из 7 хромосом, число молекул ДНК- 14 (2с).
3) Во втором делении мейоза расходятся хроматиды, поэтому в конце телофазы 2 мейоза хромосомный набор в клетках одинарный (п)-7 хромосом, число молекул ДНК равно одному-7 (1с).

1)перед началом деления 2п4с – 44 и 88ДНК

2) в конце телофазы 1п2с (22 и 44 ДНК)

3) перед началом деления интерфаза – удвоение только ДНК, в конце телофазы все уменьшается в 2 раза (редукционное деление)

Другие задачи

1) В половых клетках 23 хромосомы, т.е. в два раза меньше, чем в соматических, поэтому масса ДНК в сперматозоиде в два раза меньше и составляет 6х 10-9: 2 = 3х 10-9мг.

2) Перед началом деления (в интерфазе) количество ДНК удваивается и масса ДНК равна 6х 10-9 х2 = 12 х 10-9мг.

3) После митотического деления в соматической клетке число хромосом не меняется и масса ДНК равна 6х 10-9 мг.

    при нарушении мейоза возникает нерасхождение хромосом женщин

    форм-ся аномальные клетки (ХХ вместо Х)

    при оплодотворении образуется трисомия (ХХХ)

ЗАДАНИЕ 27 (ЗАДАЧИ ПО ЦИТОЛОГИИ). ДЕЛЕНИЕ КЛЕТКИ И ХРОМОСОМНЫЙ НАБОР

Какой хромосомный набор характерен для гамет и спор растения мха кукушкина льна? Объясните, из каких клеток и в результате какого деления они образуются.

Какой хромосомный набор характерен для гамет и гаметофита мха сфагнум? Объясните, из каких клеток и в результате какого деления они образуются.

Какой хромосомный набор характерен для листьев (вай) и заростка папоротника ? Объясните, из каких исходных клеток и в результате, какого деления образуются эти клетки.

Какой хромосомный набор характерен для клеток спороносных побегов и заростка плауна ? Объясните, из каких исходных клеток и в результате какого деления они образуются.

Какой хромосомный набор характерен для клеток мякоти иголок и спермиев сосны ? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны ? Объясните, из каких исходных клеток и в результате, какого деления образуются эти клетки.

Какой хромосомный набор характерен для ядер клеток эпидермиса листа и восьмиядерного зародышевого мешка семязачатка цветкового растения ? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

Какой хромосомный набор характерен для клеток зародыша и эндосперма семени, листьев цветкового растения . Объясните результат в каждом случае.

Набор хромосом по стадиям гаметогенеза

В соматических клетках мухи дрозофилы содержится 8 хромосом. Определите число хромосом и молекул ДНК в клетках при сперматогенезе в зоне размножения и в конце зоны созревания гамет. Ответ обоснуйте. Какие процессы происходят в этих зонах?

В кариотипе одного из видов рыб 56 хромосом. Определите число хромосом и молекул ДНК в клетках при овогенезе в зоне роста в конце интерфазы и в конце зоны созревания гамет. Объясните полученные результаты.

Кариотип собаки включает 78 хромосом. Определите число хромосом и молекул ДНК в клетках при овогенезе в зоне размножения и в конце зоны созревания гамет. Ответ обоснуйте. Какие процессы происходят в этих зонах?

Набор хромосом и количество ДНК по фазам митоза и мейоза

Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в профазе мейоза I и метафазе мейоза II. Объясните результаты в каждом случае.

Укажите число хромосом и количество молекул ДНК в профазе первого и второго мейотического деления клетки. Какое событие происходит с хромосомами в профазе первого деления?

Хромосомный набор соматических клеток речного рака равен 116. Определите хромосомный набор и число молекул ДНК в одной из клеток в профазе митоза, в метафазе митоза и телофазе митоза. Поясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в одной из клеток семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.

Соматические клетки дрозофилы содержат 8 хромосом. Как изменится число хромосом и молекул ДНК в ядре при гаметогенезе перед началом деления и в конце телофазы мейоза I? Объясните результаты в каждом случае.

У крупного рогатого скота в соматических клетках 60 хромосом. Определите число хромосом и молекул ДНК в клетках яичников при овогенезе в интерфазе перед началом деления и в анафазе мейоза I и мейоза II , в конце всего деления. Объясните полученные результаты на каждом этапе.

В клетках эндосперма семян лилии 21 хромосома. Как изменится число хромосом и молекул ДНК в конце телофазы мейоза1 и мейоза2 по сравнению с интерфазой у этого организма? Ответ поясните.

Соматические клетки кролика содержат 44 хромосомы. Как изменится число хромосом и молекул ДНК перед началом деления и в конце телофазы мейоза1? Ответ поясните.

Другие задачи

Сколько хромосом содержит ядро исходной клетки, если в результате мейоза образуется ядро с 6 хромосомами?

Какое число хромосом содержат дочерние ядра, образовавшиеся при митозе гаплоидных клеток, содержащих 14 хромосом?

Общая масса всех молекул ДНК в 46 соматических хромосомах одной соматической клетки человека составляет 6х10-9 мг. Определите, чему равна масса всех молекул ДНК в сперматозоиде и в соматической клетке перед началом деления и после его окончания. Ответ поясните.

Синдром Дауна у человека проявляется при трисомии по 21 паре хромосом. Каковы причины появления такого хромосомного набора

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

История открытия хромосом

Еще в середине позапрошлого XIX века многие биологи изучая в строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» — окраска и «somo» — тело.

Хромосомная теория наследственности

Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности — генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

Строение хромосом

Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

Формы и виды хромосом

Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

  • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
  • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
  • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

Функции хромосом

Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

Набор хромосом

Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у – 48, а хромосомный набор человека составляет 46 хромосом.

В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

Хромосомный набор человека

Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара — половых хромосом — разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

Генетические болезни, связанные с хромосомами

Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

Хромосомы, видео

И в завершение интересно образовательное видео про хромосомы.


Эта статья доступна на английском языке — .

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).



Top