Названия квазаров. Квазары в картинках и фотографиях

Сам термин «квазар» образовался от слов quas istella r и r adiosource, буквально означая: , похожий на звезду. Это самые яркие объекты нашей Вселенной, имеющие очень сильное . Их относят к активным галактическим ядрам – это не укладывающиеся в традиционную классификацию.

Многие считают их огромными , интенсивно всасывающими в себя всё, что их окружает. Вещество, приближаясь к ним, разгоняется и очень сильно разогревается. Под воздействием магнитного поля чёрной дыры частицы собираются в пучки, которые разлетаются от её полюсов. Этот процесс сопровождается очень ярким свечением. Есть версия, что квазары – это галактики в начале своей жизни, и фактически, мы видим их появление.

Если предположить, что квазар – некая сверхзвезда, сжигающая составляющий её водород, то массу она должна иметь до миллиарда солнечной!

Но это противоречит современной науке, считающей, что звезда, массой больше 100 солнечных, обязательно будет неустойчивой и, вследствие этого, распадётся. Источник их гигантской энергии тоже пока остается загадкой.

Яркость

Квазары имеют громадную мощность излучения. Она может превышать мощность излучения всех звёзд целой галактики в сотни раз. Мощь так велика, что объект, отдалённый от нас на миллиарды световых лет, мы можем увидеть в обычный телескоп.

Получасовая мощность излучения квазара может быть сопоставима с энергией, выделившейся при взрыве сверхновой.

Светимость может превышать светимость галактик в тысячи раз, а ведь последние состоят из миллиардов звёзд! Если сравнивать количество энергии, произведённое в единицу времени квазаром и то разница получится в 10 триллионов раз! А размер такого объекта может быть вполне сравним с объёмом .

Возраст

Возраст этих суперобъектов определяется десятками миллиардов лет. Ученые вычислили: если сегодня соотношение квазаров и галактик 1: 100000, то 10 млрд. лет назад оно было 1: 100.

Расстояния до квазаров

Расстояния до удалённых объектов Вселенной определяются с помощью . Для всех наблюдаемых квазаров характерно сильное красное смещение, то есть, они удаляются. И скорость их удаления просто фантастическая. Например, для объекта 3С196 была вычислена скорость 200000 км/сек (две трети скорости света)! А до него около 12 млрд. световых лет. Для сравнения, галактики летят с максимальными скоростями «всего» в десятки тысяч км/сек.

Некоторые астрономы считают, что и потоки энергии от квазаров, и расстояния до них несколько преувеличены. Дело в том, что нет уверенности в методах изучения сверхдалёких объектов, за всё время интенсивных наблюдений не удалось достаточно определённо установить расстояния до квазаров.

Переменность

Настоящая загадка – переменность квазаров. Они изменяют свою светимость с необычайной частотой, у галактик таких изменений не бывает. Период изменений может исчисляться годами, неделями и сутками. Рекордом считается изменение блеска в 25 раз за один час. Эта переменность характерна для всех излучений квазара. Исходя из последних наблюдений, выясняется, что бо льшая часть квазаров расположена возле центров громадных эллиптических галактик.

Изучая их, нам становится более понятной структура Вселенной и её эволюция.

Внешность иногда действительно оказывается обманчивой. Ну кто бы мог подумать, что слабенькие, доступные лишь достаточно крупным телескопам звездочки окажутся ярчайшими светильниками Вселенной?

Их бы и считали обычными звездами, если бы они не излучали относительно интенсивные радиоволны. К 1963 г. стали известны пять точечных источников космического радиоизлучения, сначала получивших название «радиозвезды». Однако вскоре этот термин был признан неудачным и таинственные радио излучатели стали называть квазизвездными радиоисточниками, или, сокращенно, квазарами.

Исследуя спектр квазаров, астрономы убедились, что они очень далеки от Земли и принадлежат к миру галактик. Более того - постепенно выяснилось, что квазары вообще самые далекие из доступных сегодня человеку космических объектов. Так, уже на первых порах оказалось, что расстояние до квазара 3С 273 равно двум миллиардам световых лет, причем квазар удаляется от Земли со скоростью 50000 км/сек! Ныне известно около 1500 квазаров, причем самый далекий из них удален от нас примерно на 15 миллиардов световых лет! Заметим, что этот квазар одновременно и самый быстрый - он «убегает» от нас со скоростью, близкой к скорости света!

Когда стала очевидной почти невообразимая удаленность квазаров, возник вопрос, что это за тела (или системы тел) и почему они так ярко светят? Даже рядовой квазар излучает свет, в десятки и сотни раз сильнее, чем самые крупные галактики, состоящие из сотен миллиардов звезд. А есть и квазары, еще в десятки раз более яркие. Характерно, что квазары излучают во всем электромагнитном диапазоне от рентгеновских волн до радиоволн, причем у многих из них инфракрасное («тепловое») излучение особенно мощно. Даже средний квазар ярче 300 миллиардов солнц!

При всех этих свойствах совершенно неожиданно оказалось, что блеск квазаров испытывает заметные колебания, как у переменных звезд. Самым удивительным было то, что периоды таких колебаний подчас чрезвычайно малы - недели, дни и даже меньше. Недавно открыт квазар с периодом изменения блеска всего около 200 секунд!

Этот факт неоспоримо свидетельствовал о том, что размеры квазаров относительно невелики. В природе нет ничего быстрее света. Поэтому взаимодействие внутри любой материальной системы не может происходить быстрее 300000 км/сек. Значит, если квазар меняет свой блеск, то его размеры не превышают соответствующее число световых лет, дней или часов. Говоря более ясно, любой объект, меняющий блеск с периодом в «t» лет, имеет поперечник не более «t» световых лет.

Из этого следует, что размеры квазаров очень малы и их диаметры, как правило, не превосходят несколько сотен астрономических единиц. Напомним читателю, что поперечник нашей планетной системы равен 100 а.е., а значит, по размерам квазары сравнимы с планетной системой. Квазар с периодом в 200 секунд имеет поперечник 6 . 10 10 м, что вдвое меньше радиуса земной орбиты. Откуда же в таком малом объеме космического пространства берутся чудовищно большие запасы энергии?

Выяснено, что квазары могут существовать не более нескольких миллионов лет и за время своей жизни они излучают фантастическую энергию 1055 Дж. Однако спектр квазаров по химическому составу мало чем отличается от спектра обычных звезд. В отдельных случаях удается различить двойственность квазаров, неоднородности их структуры. Так, вблизи квазара 3С 273 обнаружено волокно, выброшенное из квазара в результате какого-то мощнейшего взрыва. Все это свидетельствует о мощнейших взрывных процессах, и квазары предстают современным астрофизикам как объекты, «переполненные» энергией, от которой они всячески стараются освободиться.

По мнению одних астрономов квазары - это сверхзвезды с массой, в миллиард раз больше солнечной. В такой сверхзвезде в ходе термоядерных реакций превращения водорода в гелий могла бы за миллионы лет выделиться энергия в 1055 Дж. Беда в том, что по современным теоретическим представлениям, о чем уже говорилось, звезды с массой, более чем в 100 раз большей, чем у Солнца, неустойчивы.

Другие полагают, что квазары - это сверхмассивные черные дыры с массой в миллиарды солнц. Засасывание в дыру громадных масс газа могло бы, по их мнению, привести к наблюдаемому мощному энерговыделению. Многие считают квазары активными ядрами очень далеких галактик.

Следует помнить, что, наблюдая квазары, мы видим прошлое, удаленное от нашей эпохи на миллиарды лет. Любопытно, что по мере нашего продвижения в глубины мирового пространства количество открываемых квазаров сначала увеличивается, а потом уменьшается. Этот факт доказывает, что квазары - кратковременная форма существования материи. Возможно, что квазары - это фрагменты, осколки того напоенного энергией сверхплотного тела, из которого при взрыве 15-20 миллиардов лет назад образовалась наблюдаемая часть Вселенной. Так ли это на самом деле, станет ясно в будущем.

Термин образован сочетанием двух слов - quasistellar (похожий на звезду) и radiosource (радиоизлучение). Подразумевается, что квазар - это квазизвездный источник радиоизлучения.

Маяки Вселенной

С момента обнаружения первых квазаров прошло уже более полувека. Число известных объектов назвать сложно из-за отсутствия четких разграничений между квазарами и остальными типами галактик с активными ядрами. Если в конце ХХ века было известно около 4000 подобных объектов, то на сегодняшний день их количество приближается к 200 тыс. Кстати, первичное мнение, что все квазары являются мощным источником радиоизлучения, оказалось ошибочным, - лишь сотая часть всех объектов соответствует этому требованию.

Самый яркий и ближайший к Солнечной системе квазар (3С273, открыт одним из первых) находится на расстоянии 3 млрд световых лет. Излучение от наиболее удаленного (РС1247+3406) проходит путь к земному наблюдателю за 13,75 млрд лет, что приблизительно равно возрасту Вселенной, т. е. сейчас мы его видим таким, каким он был в момент Большого взрыва. Квазар - это самый удаленный наблюдаемый объект безграничного космического пространства.

Неправильное излучение

Ученых поставил в тупик первый же открытый квазар. Наблюдения и анализ спектра не имели ничего общего ни с одним из известных объектов настолько, что казались ошибочными и нераспознаваемыми. В 1963 году голландский астроном М. Шмидт (Паломарская обсерватория, США), предположил, что спектральные линии просто очень сильно смещены в длинноволновую (красную) сторону. Закон Хаббла позволил по величине красного смещения определить космологическое расстояние до объекта и скорость его удаления, что привело к еще большему удивлению. Удаленность квазара оказалась чудовищной, и при этом он выглядел в телескоп как обычная звезда +13m величины. Сопоставление расстояния со светимостью давало массу объекта в миллиарды масс Солнца, чего даже теоретически не может быть.

К интересным выводам приводит сравнение спектральных характеристик квазаров с данными галактик различных типов. Обнаруживается следующая структура плавного изменения свойств:

  • Нормальные галактики (типы Е, SO -радиоизлучение во много раз слабее оптического)- самые близкие, с обычным спектром.
  • Эллиптические (тип Е, с четкой спиралевидной формой и отсутствием бело-голубых звезд-гигантов и сверхгигантов).
  • Радиогалактики (мощность радиоизлучения до 10 45 эрг/с).
  • Голубые и компактные (удаленные, с большим красным смещением и высокой яркостью).
  • Сейфертовские (с активным ядром).
  • Лацертиды - мощные источники излучения в активных ядрах некоторых галактик, характеризующиеся высокой переменностью блеска.

Последние удалены на гораздо меньшее расстояние, чем квазары, и вместе с ними образуют класс блазаров. По предположениям ученых, блазары - активные ядра галактик, связанные со сверхмассивными черными дырами.

Пожиратели миров

Как такое может быть? Ведь черная дыра имеет такое сверхмощное гравитационное поле, что его не может покинуть даже свет. А квазар - это самый яркий объект, если учитывать расстояние до него.

Источником электромагнитного излучения выступают гравитационные силы черной дыры, находящейся в центре галактики. Они притягивают попавшие в поле звезды, и разрушают их. Из образовавшегося при этом газа вокруг черной дыры формируется аккреционный диск. Под действием гравитации он сжимается и приобретает высокую угловую скорость, что приводит к сильному разогреву и генерации излучения. Вещество из внутренних областей диска, не поглощенное черной дырой, идет на образование джетов - узконаправленных потоков элементарных частиц с высокой энергией, формирующихся под действием магнитного поля с противоположных полюсов ядра галактики. Длина джетов может лежать в диапазоне от нескольких до сотен тысяч световых лет и зависит от диаметра аккреционного диска объекта.

Точка зрения

Приведенная выше теория - наиболее популярная, объясняющая большую часть наблюдаемых свойств "смертоносных" астрономических тел. Менее распространена версия, что квазар - "зародыш" галактики, формирование которой происходит на наших глазах. Но все ученые единодушны во мнении, что эти объекты - явления оптического характера. Одно и то же тело может идентифицироваться как сейфертовская или радиогалактика, как лацертид или квазар. Значение имеет, под каким углом оно расположено к наблюдателю:

  • Если взгляд наблюдателя совпадает с плоскостью аккреционного диска, экранирующего процессы в активном ядре, он видит радиогалактику (в этом случае большая часть излучения лежит в радиодиапазоне).
  • Если - с направлением джетов, то блазар с жестким гамма-излучением.

Но, как правило, объект наблюдается под промежуточным углом, при котором принимается большая часть всего излучения.

Динамика свечения

Фундаментальное свойство квазаров - изменение светимости в течение коротких промежутков времени. Благодаря этому вычислили, что диаметр квазара не может быть более 4 млрд км (орбита Урана).

Ежесекундно квазар испускает в пространство в сто раз больше световой энергии, чем вся наша галактика (Млечный путь). Для поддержания такой колоссальной производительности черная дыра ежесекундно должна "проглатывать" планету не меньше Земли. При недостатке вещества интенсивность поглощения ослабевает, функционирование замедляется, блеск квазара ослабевает. После подхода и захвата новых "жертв" светимость приходит в норму.

Недружелюбные соседи

Зная опасные свойства этих мощных источников энергии, остается благодарить мироздание, что они обнаружены лишь на огромном удалении, а в нашей и в ближайших галактиках - отсутствуют. Но нет ли здесь противоречия с Теорией однородности Вселенной? При поисках ответа следует учитывать, что мы наблюдаем эти объекты такими, какими они были миллиарды лет назад. Интересно, а что такое квазар в наше время, сегодня? Астрономы активно обследуют близлежащие космические структуры в поисках бывших, израсходовавших свое "топливо", сверхмощных источников. Ждем результатов.

Известные объекты ученые используют в качестве космологического инструмента для изучения свойств и определения основных этапов эволюции Вселенной. Так, только открытие квазаров позволило сделать выводы об отличии от нуля энергии вакуума, сформулировать основные проблемы поиска темной материи, укрепить уверенность в важном месте черных дыр в формировании галактик и их дальнейшем существовании.

Противоречия. Время покажет

Существует довольно много суждений о том, как устроен и как функционирует квазар. Отзывы специалистов о различных теориях также представлены широким спектром: от ироничных до восторженных. Но есть объекты с рядом свойств, у которых нет возможных объяснений.

  • Иногда у одного и того же квазара величина красного смещения отличается в 10 раз, следовательно, объект во столько же раз меняет скорость удаления. Чем не мистика?
  • Если при наблюдении двух удаляющихся друг от друга квазаров оценивать расстояние до них по их красному смещению, то скорость, с которой они разбегаются, окажется выше скорости света!

Эти феноменальные результаты получаются, исходя из теории Большого взрыва, вследствии общей теории относительности. Что-то не так с теорией? В общем, квазар - это явление, которое еще ждет своих исследователей!

>

Квазар – активное ядро галактики на начальном этапе развития: исследование, описание и характеристика с фото и видео, мощное магнитное поле, строение и типы.

Самое интересное в науке – находить нечто необычное. Сначала ученые вообще не понимают, с чем столкнулись и тратят десятилетия, а иногда и века, чтобы разобраться в возникшем явлении. Так и было с квазаром.

В 1960-х годах земные телескопы столкнулись с загадкой. От , и некоторых приходили радиоволны. Но были найдены и необычные источники, ранее не наблюдавшиеся. Они были крошечными, но невероятно яркими.

Их назвали квазизвездными объектами («квазары»). Но наименование не объяснило природу и причину появления. На начальных этапах удалось лишь узнать, что они двигаются от нас на 1/3 скорости света.

– невероятно интересные объекты, потому что своим ярким сиянием способны затмить целые галактики. Это далекие формирования, подпитывающиеся от , и в миллиарды раз массивнее Солнца.

Первые полученные данные о количестве поступающей энергии повергли ученых в настоящий шок. Многие не могли поверить в существование подобных объектов. Скептицизм заставил их искать другое объяснение происходящему. Некоторые думали, что красное смещение не указывает на удаленность и связано с чем-то другим. Но последующие исследования отбрасывали альтернативные идеи, из-за чего пришлось согласиться, что перед нами – действительно одни из ярчайших и удивительных вселенских объектов.

Изучение началось в 1930-х годах, когда Карл Янски понял, что статистические помехи в трансатлантических телефонных линиях происходили от Млечного Пути. В 1950-х гг. ученые использовали радиотелескопы, чтобы изучить небо, и объединить сигналы с видимым наблюдением.

Удивляет и то, что источников для такого энергетического запаса у квазара не так уж и много. Наилучший вариант – сверхмассивная черная дыра. Это определенный участок в пространстве, обладающий такой сильной гравитацией, что даже световым лучам не удается вырваться за его пределы. Малые черные дыры создаются после гибели массивных звезд. Центральные по массе достигают миллиардов солнечных. Удивляет еще один момент. Хотя это невероятно массивные объекты, по радиусу могут достигать . Никто не может понять, как формируются такие сверхмассивные черные дыры.

Иллюстрация квазара и черной дыры, похожей на APM 08279+5255, где было замечено много водяного пара. Скорее всего, пыль и газ формируют тор вокруг черной дыры

Вокруг черной дыры вращается огромное газовое облако. Как только газ оказывается в черной дыре, его температура поднимается до миллионов градусов. Это заставляет его создавать тепловое излучение, делая квазар таким ярким в видимом спектре, как и в рентгеновском.

Но есть граница, именуемая пределом Эддингтона. Этот показатель зависит от массивности черной дыры. Если попадает большое количество газа, то создается сильное давление. Оно притормаживает газовый поток, сохраняя яркость квазара ниже черты Эддингтона.

Вам нужно понимать, что все квазары удалены от нас на значительные дистанции. Самый близкий расположен в 800 миллионах световых лет. Так что, можно сказать, что в современной Вселенной их уже не осталось.

Что с ними случилось? Никто точно не знает. Но, если основываться на источнике питания, то, скорее всего, все дело в том, что запас топлива подошел к нулю. Газ и пыль в диске закончились, и квазары не могли больше светить.

Квазары - Дистанционные огни

Если мы говорим о квазаре, то следует объяснить, что такое пульсар . Это быстро вращающаяся . Она создается в процессе разрушения сверхновой, когда остается сильно уплотненное ядро. Его окружает мощное магнитное поле (превышает земное в 1 триллион раз), которое заставляет объект вырабатывать заметные радиоволны и радиоактивные частицы из полюсов. Они вмещают в себя разнообразные типы излучения.

Гамма-пульсары воспроизводят влиятельные гамма-лучи. Когда нейтронный тип поворачивается к нам, мы замечаем радиоволны всякий раз, когда на нас указывает один из полюсов. Это зрелище напоминает маяк. Этот свет будет мелькать с разной скоростью (влияют размер и масса). Иногда случается так, что у пульсара появляется двоичный спутник. Тогда он может вторгаться в материю компаньона и учащать свое вращение. В быстром темпе способен пульсировать 100 раз в секунду.

Что же такое квазар?

Точного определения для квазара пока нет. Но последние сведения говорят, что квазары могут создаваться сверхмассивными черными дырами, которые поглощают вещество в аккреционном диске. С ускорением вращения она нагревается. Столкновения частичек создают большое количество света и передают его прочим формам излучения (рентгеновские лучи). Черная дыра в таком положении будет питаться веществом, равным солнечному объему за год. При этом значительное количество энергии будет выброшено из серверного и южного полюса дыры. Это называется космическими струями.

Хотя есть вариант, что перед нами молодые галактики. Так как о них известно мало, то квазар может представлять собою всего лишь раннюю стадию выброшенной энергии. Некоторые считают, что это отдаленные пространственные пункты, где новая материя поступает во Вселенную.

Природа космических радиоисточников

Астрофизик Анатолий Засов о синхротронном излучении, черных дырах в ядрах далеких галактик и нейтральном газе:

Поиск квазаров

Первый найденный квазар назвали 3C 273 (в созвездии Девы). Его нашли Т. Мэттьюс и А. Сэнджиджем в 1960 году. Тогда казалось, что он относится к 16-й звезде, подобной объекту. Но через три года заметили, что у него обнаружился серьезное красное смещение. Ученые догадались в чем дело, когда поняли, что интенсивная энергия производится на небольшой площади.

Сейчас квазары находят благодаря красному смещению. Если видят, что у объекта оно высокое, то он заносится в список претендентов. На сегодняшний день их насчитывают более 2000. Главный инструмент поиска – космический телескоп Хаббла. С развитием технологий мы сможем раскрыть все тайны этих загадочных вселенских огоньков.

Световые струи в квазарах

Ученые думают, что точечные проблески – сигналы из галактических ядер, затмевающие галактики. Квазары можно найти только в галактиках, располагающих сверхмассивными (миллиард солнечных масс). Хотя свет не способен вырваться из этого места, некоторые частицы пробиваются возле краев. Пока пыль и газ всасываются в дыру, другие частички отдаляются практически на скорости света.

Большую часть квазаров во Вселенной обнаружили на отдалении в миллиарды световых лет. Не будем забывать, что у света уходит время, чтобы добраться к нам. Поэтому, изучая подобные объекты, мы как будто возвращаемся в прошлое. Многие из 2000 найденных квазаров существовали еще в начале галактической жизни. Квазары способны генерировать энергию до триллиона электро-вольт. Это больше, чем количество света всех звезд в галактике (ярче свечения Млечного пути в 10-100000 раз).

Спектроскопия квазаров

Физик Александр Иванчик об определении первичного состава вещества, космологических эпохах и измерении фундаментальных констант:

Типы квазаров

Квазары входят в класс «активных ядер галактик». Среди прочих можно также заметить сейфертовские галактики и . Каждый из них нуждается в сверхмассивной черной дыре для подпитки.

Сейфертовские уступают по энергии, создавая лишь 100 кэВ. Блазары потребляют намного больше. Многие полагают, что эти три типа – один и тот же объект, нов разных перспективах. Струи квазаров текут под углом в направлении Земли, на что способны также и блазары. У сейфертовских струи не видны, но есть предположение, что их эмиссия направлена не на нас, поэтому не замечается.

Квазары демонстрируют раннюю структуру галактик

При помощи сканирования древнейших вселенских объектов, ученым удается понять, как выглядел во времена своей молодости.

Атакамская большая решетка миллиметрового диапазона способна запечатлеть «младенческое» состояние галактик, подобных нашей, отобразив момент, когда звезды только родились. Это удивительно, ведь они возвращаются в период, когда Вселенная по возрасту достигала всего 2 миллиардов лет. То есть, мы буквально смотрим в прошлое.

Наблюдая за двумя древними галактиками в инфракрасных длинах волн, ученые заметили, что в раннем периоде развития присутствуют нечто, напоминающее удлиненные диски водородного газа, превосходящие намного меньшие внутренние области звездообразования. Кроме того, они уже обладали вращающими газовыми и пылевыми дисками, а звезды появлялись в довольно быстрых темпах: 100 солнечных масс в год.

Изучаемые объекты: ALMA J081740.86+135138.2 и ALMA J120110.26+211756.2. В наблюдениях помогли квазары, чей свет поступал с заднего плана. Речь идет о сверхмассивных черных дырах, вокруг которых сосредоточены яркие аккреционные диски. Полагают, что они играют роль центров активных галактик.

Квазары светят намного ярче галактик, поэтому если они расположены на фоне, то галактика теряется из виду. Но наблюдение ALMA позволяет зафиксировать инфракрасный свет, исходящий от ионизированного углерода, а также водород в сиянии квазаров. Анализ показывает, что углерод создает свечение на длине волны в 158 микрометров и характеризует галактическую структуру. Места рождения звезд можно найти благодаря инфракрасному свету от пыли.

Ученые заметили еще один момент в светящемся углероде – его расположение было смещено по отношению к газообразному водороду. Это намек на то, что галактические газы отходят предельно далеко от углеродного участка, а значит, у каждой галактики можно найти большой водородный ореол.

Интересно, что один квазар светится сильнее, чем вся наша Галактика. А энергии одного среднего квазара хватит на снабжение электричеством планеты Земля на несколько миллиардов лет. А крупные квазары излучают в 60 тыс. раз больше энергии, чем средние.


Квазары – это самые удаленные от Земли объекты, разглядеть которые можно только в телескоп. Ближайшие к нам квазары находятся на расстоянии в 10 млрд. лет. Самое удивительное, что эти маленькие по размеру небесные объекты способны выделять огромное количество энергии.

Название «квазар» произошло от QUAsi stellar , что означает «псевдозвездный». Глядя в телескоп, эти небесные светила легко можно принять за звезды. Но звездами квазары не являются. Это святящиеся радиоисточники в чистом виде.
Свойства квазаров придают им схожесть с активными ядрами галактик. Квазары обладают гравитационной энергией, выделяемой при катастрофическом сжатии.


Впрочем, с квазарами связано множество гипотез. Наибольшую популярность в последнее время получила гипотеза о существовании черных дыр-квазаров. Черные дыры обладают мощной энергией, они способны втягивать в себя все окружающее их пространство. При приближении к черной дыре частицы разгоняются и сталкиваются между собой, что и приводит к мощному радиоизлучению. Черные дыры, обладающие магнитным полем, они собирают частицы в пучки. Так получаются джеты. Иными словами, сияние квазаров – это подгибание всасываемых в черные дыры частиц.


Существует еще одна версия, согласно которой квазары – это молодые галактики, которые находятся в процессе своего «созревания».
Но какая бы версия не возникла, ясно одно – квазары и галактики тесно связаны между собой.
И встреча двух этих небесных систем не предвещает ничего хорошее. Жителям планеты Земля остается только радоваться тому, что ближайший квазар (ЗС 273) располагается на расстоянии двух млрд. световых лет.


Как уже было сказано выше, квазары являются самыми отдаленными от Земли объектами. Похоже, что это еще и самые древние небожители. Изучение квазаров позволяет увидеть Вселенную такой, какой она была 2 - 10 млрд. лет назад. Открытие квазаров, которое произошло в 1963 году. Это событие оказало огромное влияние на космологию, а также разработку версии возникновения Вселенной.
Квазары – это еще одна большая загадка человечества, решение которой не найдено до сих пор. И сейчас мы находимся в поиске ответа, как появилась Вселенная. Остается только надеяться, что узнав это, мы останемся в живых.


Top