Что происходит с маслом при закалке металла. Защита изделия от окалины и обезуглероживания

Термообработка представляет собой одну из необходимых и важных операций в процессе обработки стали. Ее широко использует металлургия и машиностроение. Технология термообработки стали 45 обеспечивает достижение высоких характеристик прочности. Это обстоятельство позволяет значительно расширить область применения обработанных подобным способом деталей. При использовании технологии закалки стали 45 твердость изделий становится существенно выше.

Особенности термообработки

Закалка стали 45 – метод, широко используемый в металлургии и машиностроении. Но как закалить сталь 45, чтобы получить ожидаемый результат? Чтобы изменить характеристики, необходимо провести термообработку. При этом должны соблюдаться определенные режимы воздействия. Этот процесс схематично можно представить следующими процессами:

  • Отжиг.
  • Нормализация.
  • Старение.
  • Закалка и отпуск.

Качество стали 45 при термообработке зависит от ряда факторов.

  • Температурный режим.
  • С какой скоростью повышается температура.
  • Промежуток времени, в течение которого на металл воздействует высокая температура.
  • С какой скоростью происходит процесс охлаждения.

Термическая обработка состоит в нагревании детали до заданной температуры. Охлаждают ее с той же либо несколько иной скоростью . Железоуглеродистые сплавы характеризуются превращениями при нагревании их до определенных температур. Они носят название критических точек. Эти превращения сопряжены с кристаллизационным характером. При закалке стали 45 твердость изделий значительно повышается.

Химический состав

Что для стали означает номер 45? Это говорит о том, что в данном сплаве содержится 0,45% углерода. Остальные примеси представлены в незначительном количестве. Среди основных ее заменителей можно выделить сталь 40 и 50. Их также характеризует высокая прочность. Если рассматривать химические соединения, входящие в состав стали в процентном отношении, то наибольшая доля приходится на железо. У него этот показатель достигает 97%. В различных количествах входят и другие химические элементы. Самый низкий показатель у фосфора. В ней его содержится всего 0,035%.

Структурные изменения металла

В исходном состоянии структура представляет собой две фазы, которые смешаны между собой – феррит и цементит. Если медленно нагревать до незначительных температур, то никаких изменений в ней не произойдет. Если вести дальнейшее нагревание, феррит растворится в аустените. При нагреве выше критической температуры, структура их примет однородный характер.

Атомная решетка железа имеет объемно-центрированный характер. При сильном нагревании она становится гранецентрированной по типу. До нагревания углеродные атомы входят в перлит (кристаллы цементита), после этого он примет иное состояние и станет твердым раствором. В этом случае его атомы окажутся в решетке железа. При резком охлаждении, например, при помощи воды, ее можно закалить.

В таком состоянии она приобретет величины, характерные для комнатной температуры. Казалось бы, все перестроится в обратном порядке. Но подобные температурные параметры не придадут углеродным атомам выраженной мобильности. Скорость в этом случае настолько незначительная, что атомы просто не успевают выйти из раствора, когда имеет место быстрое охлаждение. Они остаются в структуре решетки. При этом возникает сильное внутреннее напряжение металла. Использование закаленной стали существенно увеличивают возможность применения деталей, материалом для изготовления которых явилась именно такая сталь.

Закалка

Термообработка стали 45 предполагает нагрев выше критической температуры. В дальнейшем проводится ускоренное охлаждение, проще говоря, осуществляется закаливание. После этого закаленный материал приобретает повышенную прочность и твердость. Температурный режим при закалке стали 45 определяется тем, сколько углерода и присадок легирующего характера содержится в стали.

Технология должна осуществляться в соответствии с установленным регламентом, поскольку после того, как проведена закалка, на заготовке образуется слой окалины. При этом происходит частичная потеря углерода. Металл должен охлаждаться быстро . Это не даст аустениту преобразоваться с появлением сорбита или троостита. Деталь охлаждается в соответствии с точным графиком. Если он будет нарушаться, будут образовываться мелкие трещины. Охладив деталь до температуры 200-300 градусов, процесс искусственно замедляют. При этом проводят применение охлаждающих жидкостей.

Для нагревания используются специальные печи. Перед этим производят подогрев отдельных частей. При этом проводят использование:

  • печей, где температура 500 градусов;
  • специальных соляных ванн.

Деталь погружается на несколько секунд 2-3 раза. Непременное условие: прогрев всей детали должен осуществляться равномерно. Все заготовки погружаются одномоментно, далее необходима выдержка. Подробнее об этом можно посмотреть в видео.

Закалка с помощью ТВЧ

С использованием ТВЧ температура нагрева более высокая по своим показателям.

Подобное обстоятельство становится возможным благодаря наличию двух факторов:

Нагрев обусловливает ускоренное изменение и переход перлита в аустенит.
Процесс происходит в границах сжатых временных рамок. Температура при этом очень высокая о своей величине.
Но при этом заготовка не перегревается. При таких операциях характеристики металла, обусловливающие его твердость, становятся больше на 3 единицы по Роквеллу. С помощью такого способа закалить деталь можно весьма основательно.

Испытание твердости, а, следовательно, и закаливаемость деталей, определяют по методу Бринелля.

Отпуск

Этот процесс определяется той температурой, которая необходима. С этой целью используются:

  • печи, имеющие принудительную циркуляцию воздуха;
  • селитровый раствор в специальных ваннах;
  • масляные ванны;
  • ванна, заполненная щелочью.

Температуру отпуска определяет марка стали. Процесс позволяет изменить структуру и снизить напряженность в металле . При этом не наблюдается значительного снижения твердости. Затем заготовка попадает в поле зрения технического контроля, а после этого отправляется заказчику.

Меры предосторожности

Подобные операции представляют определенную опасность для жизни и здоровья человека. Электроустановки для нагрева связаны с опасным воздействием электрического тока. Работа с закалочными ваннами связана с выделением в окружающее пространство вредных паров и газов. В этом плане большое значение имеет оборудование и хорошая исправная работа локальных вытяжных вентиляционных систем. Помимо этого, подобные места оборудуются и общеобменной вентиляцией.

Если процесс осуществляется с использованием масла либо керосина, не исключена возможность, что воспламенятся их пары. Надо проводить защиту от химических ожогов. Хранение селитры осуществляется в соответствии с требуемыми правилами. Раствор селитры в расплавленном состоянии не должен быть температурой выше 60 градусов. Цианистые соли фасуются только при наличии местной вытяжной вентиляции. Все работы проводятся только с применением средств индивидуальной защиты. Чтобы не образовывалась ядовитая синильная кислота, нельзя допускать совместное хранение цианистых солей с растворами кислот.

Слово «термообработка» для обывателей не ново. Все прекрасно понимают, для чего она необходима. Повышение прочности стали. Но почему так происходит? Какие процессы протекают в металле в этот момент? Большинство пожимает плечами. Если Вы хотите понять, что такое термообработка, узнать в чем разница между отжигом и отпуском, и почему закалка стали 45 производится в масле, а не в воде, то тогда эта статья для Вас.

Общие сведения о термической обработке

Термообработка - это последовательность процессов нагревания, выдержки и охлаждения, направленных на изменение сталью механических свойств.

Улучшения свойств металла происходит за счет трансформации внутренней структуры. После осуществления термической обработки сталь может находиться в 2-х состояниях: устойчивом и неустойчивом.

Устойчивое состояние характеризуется полным завершением всех протекающих процессов в стали. Неустойчивое, соответственно, наоборот, когда на сталь еще воздействуют факторы, мешающие стабилизации внутренних напряжений. Ярким примером является химическая неоднородность закаленной стали.

Повышение теплового движения молекул способствует ускорению выхода стали из неустойчивого состояния. Достигается это путем нагрева.

Для большего понимания процессов, происходящих в стали во время термообработки, введем несколько понятий о структуре металла. Под этим понимается размер внутренних зерен и их положение относительно друг друга. Каждой структуре соответствует определенная температура и определенное содержание углерода.

Основные их виды и свойства, которыми они обладают:

  • Феррит - твердый раствор железа с углеродом и небольшой долей других химических элементов. Ферромагнитен. Ферритная сталь обладает высокой тепло- и электропроводимостью. Пластична. Твердость порядка 70-140 единиц по шкале Бринелля.
  • Цементит - неустойчивое соединение углерода с железом. Очень тверд и хрупок (НВ 790-810). Не поддается намагничиванию.
  • Перлит - фазовый раствор феррита и цементита. На его механические свойства в первую очередь оказывает влияние расстояние между фазами. Чем они ближе, тем сталь прочнее. Твердость находится в пределах 160-230 НВ, при относительном удлинении 9-12%.
  • Мартенсит - перенасыщенная физико-химическая смесь углерода и железа. Значение его механических характеристик зависит от количества углерода в составе. Мартенситная сталь с концентрацией 0,2% С обладает твердостью около 35 HRC. При 0,6% твердость составляет 60 HRC.
  • Аустенит - твердый раствор углерода в железе. Аустенитная сталь парамагнитна и пластична. Относительное удлинение составляет 42%.

Сам процесс термообработки включает в себя:

  • Закалка.
  • Отжиг.
  • Нормализация.
  • Отпуск.

Отжиг

Процесс отжига состоит из нагревания, выдержки и медленного охлаждения в печной среде.

Существует две его основные разновидности:

  • Отжиг первого рода, при котором структура в сталях не претерпевает изменений.
  • Отжиг второго рода, сопровождающийся трансформациями структурных зон.

Каждая из представленных видов термообработки имеет определенное назначение.

Отжиг первого рода выполняет следующие технологические задачи:

  • Выравнивание химсостава стали. При обработке металла давлением ликвация становится причиной образования изломов и микротрещин. Для уменьшения их вероятности появления сталь нагревают до 1250 ºС и выдерживают ее при такой температуре на протяжении 8-15 ч.
  • Увеличение обрабатываемости стали давлением. Термообработка проходит при 670 ºС с выдержкой 40-120 мин. Отжиг увеличивает зерна феррита, что положительно влияет на пластичность.
  • Уменьшение остаточных напряжений, возникших после технологической обработки сталей: резание, сварка и прочее. Для этого сталь выдерживают при 500-620 ºС на протяжении двух часов.

Отжиг второго рода измельчает зерна стали и способствует образованию структуры феррит +перлит. Как результат, происходит увеличение механических свойств. Температура нагрева для стали 45 составляет 780-830 ºС.

Отжиг второго рода считается подготовительной термообработкой. Его проводят перед операциями резания для повышения обрабатываемости металла.

Нормализация

Это процесс нагревания стали и последующее охлаждение на воздухе, в результате которого происходит измельчение крупнозернистой структуры.

Если сравнивать с отжигом, то нормализация дает в среднем на 10% выше показатель вязкости и прочности. Причина этого кроется в охлаждении на воздухе, которое способствует разложению аустенитных фаз в нижней зоне температур. Как следствие, наблюдается увеличение перлита, что и является причиной повышения механических свойств.

Нормализация - альтернатива закалке и высокому отпуску. Конечно, на выходе механические свойства получаются ниже, но и сама нормализация менее трудоемка. К тому же, по сравнению с закалкой она вызывает меньшие тепловые деформации детали.

Отпуск

Это термообработка, которая всегда проводится на заключительном этапе. Она включает в себя нагревание закалённой стали до температурной точки трансформации перлита в аустенит и дальнейшее ее охлаждение. С его помощью механические характеристики сталей доводятся до требуемых значений.

Помимо этого, в задачу отпуска входит снятие напряжений, оставшихся после закалки.

Отпуск подразделяется на 3 типа по температуре нагрева:

  • Низкий отпуск. Проводится при 230-260 ºС. Способствует упрочнению с одновременным снижением внутренней напряженности. Закаленная сталь 45 после низкого отпуска обладает твердостью 55-60 HRC.
  • Средний отпуск. Температура нагревания 340-550 ºС. Позволяет достичь наиболее высокого значения упругих свойств. Из-за этого в основном применяется при изготовлении пружин. Твердость находится на уровне 45-52 HRC.
  • Высокий отпуск. Выполняется при 550 ºС. Снимает внутренние напряжения после закаливания.

Механические свойства уменьшаются, но значение их при этом не меньше, чем после нормализации и отжига. Также происходит увеличение ударной вязкости. Самой оптимальной термообработкой с точки зрения соотношения вязкости и прочности считается закалить сталь, а после провести высокий отпуск.

Закалка

Представляет собой процесс нагрева до температуры на 20-40 ºС выше точки растворения феррита в аустените и последующее быстрое охлаждение в воде или масле.

Образование значительных внутренних напряжений при закалке не позволяет ей быть окончательной термообработкой. Обычно за ней следует отпуск или нормализация.

В результате нагрева сталь получает аустенитную структуру, которая, охлаждаясь, переходит в мелкоигольчатый мартенсит .

Закалка стали 45 осуществляется при 840-860 ºС.

Если сталь закалить, не достигнув значения требуемой температуры, то в результате останутся ферритные зоны, чье присутствие значительно снижает прочность металла.

Если сталь 45 закалить при температуре выше 1000 ºС, это спровоцирует увеличение зерна мартенсита, что влечет за собой ухудшение вязкости и повышение риска образования трещин.

Нагрев сталей под закалку осуществляется в электропечах периодического или непрерывного действия.

Время нагрева зависит от:

  • Химсостава стали.
  • Формы и габаритов деталей.

Чем больше размеры и содержание углерода, тем большее количество времени необходимо для нагрева стали.

После нагревания стали идет ее выдержка при заданной температуре. Это необходимо для выравнивания неоднородности аустенита.

При сильном перегреве сталь начинает вступать в реакцию с печными газами. Это может повести за собой процессы окисления и обезуглероживания.

Окисление - химический процесс взаимодействия кислорода с железом. Оно отрицательно сказывается на свойствах стали, является причиной снижения качества поверхности и окалин.

Обезуглероживание возникает как следствие химической реакции углерода с водородом и кислородом. Как следствие, образуя такие соединения как угарный газ и метан. Полученные газы уносят вместе с собой с поверхности стали молекулы углерода, вызывая тем самым резкое снижение прочности.

Защитой стали от окисления и обезуглероживания служит осуществление нагревания в вакууме или расплавленной соли.

В качестве закалочных сред применяется вода или масло.

Вода обладает большой скоростью охлаждения, но она резко падает при увеличении температуры. Также недостатком воды является возникновение значительных напряжений и, соответственно, коробление деталей.

Масло в этом плане охлаждает более равномерно, что уменьшает риск образования микротрещин при закалке. Среди ее недостатков стоит отметить низкую температуру воспламенения и загустение, что уменьшает ее закалочные свойства.

Разная сталь имеет разную закаливаемость, т.е. способность увеличивать прочность посредством закалки. Как правило, чем выше концентрация углерода, тем выше закалочные свойства.

Закалка ТВЧ

Если сталь закалить таким образом, то она будет лучше справляться с переменной и ударной нагрузкой. Закалка ТВЧ считается разновидностью поверхностной закалки, основная задача которой получение более прочного наружного слоя, сохраняя при этом вязкость сердцевины.

Нагрев под закалку ТВЧ осуществляют в индукционных печах, используя ток высокой частоты. Принцип данной термообработки заключается в неравномерном нагреве сечения изделия. Плотность тока на наружней части стали значительно выше в сравнении с сердцевиной. Основная часть тепла приходится на поверхность, соответственно, именно в этой зоне и происходит упрочнение.

Технологии придания большей твердости металлам и сплавам совершенствовались в течение долгих веков. Современное оборудование позволяет проводить термическую обработку таким образом, чтобы значительно улучшать свойства изделий даже из недорогих материалов.

Закалка (мартенситное превращение) — основной способ придания большей твердости сталям. В этом процессе изделие нагревают до такой температуры, что железо меняет кристаллическую решетку и может дополнительно насытиться углеродом. После выдержки в течение определенного времени, сталь охлаждают. Это нужно сделать с большой скоростью, чтобы не допустить образования промежуточных форм железа.
В результате быстрого превращения получается перенасыщенный углеродом твердый раствор с искаженной кристаллической структурой. Оба эти фактора отвечают за его высокую твердость (до HRC 65) и хрупкость.
Большинство углеродистых и инструментальных сталей при закаливании нагревают до температуры от 800 до 900С, а вот быстрорежущие стали Р9 и Р18 калятся при 1200-1300С.

Микроструктура быстрорежущей стали Р6М5: а) литое состояние; б) после ковки и отжига;
в) после закалки; г) после отпуска. ×500.

Режимы закалки

  • Закалка в одной среде

Нагретое изделие опускают в охлаждающую среду, где оно остается до полного остывания Это самый простой по исполнению метод закалки, но его можно применять только для сталей с небольшим (до 0,8%) содержанием углерода либо для деталей простой формы. Эти ограничения связаны с термическими напряжениями, которые возникают при быстром охлаждении — детали сложной формы могут покоробиться или даже получить трещины.

  • Ступенчатая закалка

При таком способе закалки изделие охлаждают до 250-300С в соляном растворе с выдержкой 2-3 минуты для снятия термических напряжений, а затем завершают охлаждение на воздухе. Это позволяет не допускать появления трещин или коробления деталей. Минус этого метода в сравнительно небольшой скорости охлаждения, поэтому его применяют для мелких (до 10 мм в поперечнике) деталей из углеродистых или более крупных — из легированных сталей, для которых скорость закалки не столь критична.

  • Закалка в двух средах

Начинается быстрым охлаждением в воде и завершается медленным — в масле. Обычно такую закалку используют для изделий из инструментальных сталей. Основная сложность заключается в расчете времени охлаждения в первой среде.

  • Поверхностная закалка (лазерная, токами высокой частоты)

Применяется для деталей, которые должны быть твердыми на поверхности, но иметь при этом вязкую сердцевину, например, зубья шестеренок. При поверхностной закалке внешний слой металла разогревается до закритических значений, а затем охлаждается либо в процессе теплоотвода (при лазерной закалке), либо жидкостью, циркулирующей в специальном контуре индуктора (при закалке током высокой частоты)

Отпуск

Закаленная сталь становится чрезмерно хрупкой, что является главным недостатком этого метода упрочнения. Для нормализации конструкционных свойств производят отпуск — нагрев до температуры ниже фазового превращения, выдержку и медленное охлаждение. При отпуске происходит частичная «отмена» закалки, сталь становится чуть менее твердой, но более пластичной. Различают низкий (150-200С, для инструмента и деталей с повышенной износостойкостью), средний (300-400С, для рессор) и высокий (550-650, для высоконагруженных деталей) отпуск.

Таблица температур закалки и отпуска сталей

№ п/п Марка стали Твёрдость (HRCэ) Температ. закалки, град.С Температ. отпуска, град.С Температ. зак. ТВЧ, град.С Температ. цемент., град.С Температ. отжига, град.С Закал. среда Прим.
1 2 3 4 5 6 7 8 9 10
1 Сталь 20 57…63 790…820 160…200 920…950 Вода
2 Сталь 35 30…34 830…840 490…510 Вода
33…35 450…500
42…48 180…200 860…880
3 Сталь 45 20…25 820…840 550…600 Вода
20…28 550…580
24…28 500…550
30…34 490…520
42…51 180…220 Сеч. до 40 мм
49…57 200…220 840…880
<= 22 780…820 С печью
4 Сталь 65Г 28…33 790…810 550…580 Масло Сеч. до 60 мм
43…49 340…380 Сеч. до 10 мм (пружины)
55…61 160…220 Сеч. до 30 мм
5 Сталь 20Х 57…63 800…820 160…200 900…950 Масло
59…63 180…220 850…870 900…950 Водный раствор 0,2…0,7% поли-акриланида
«— 840…860
6 Сталь 40Х 24…28 840…860 500…550 Масло
30…34 490…520
47…51 180…200 Сеч. до 30 мм
47…57 860…900 Водный раствор 0,2…0,7% поли-акриланида
48…54 Азотирование
<= 22 840…860
7 Сталь 50Х 25…32 830…850 550…620 Масло Сеч. до 100 мм
49…55 180…200 Сеч. до 45 мм
53…59 180…200 880…900 Водный раствор 0,2…0,7% поли-акриланида
< 20 860…880
8 Сталь 12ХН3А 57…63 780…800 180…200 900…920 Масло
50…63 180…200 850…870 Водный раствор 0,2…0,7% поли-акриланида
<= 22 840…870 С печью до 550…650
9 Сталь 38Х2МЮА 23…29 930…950 650…670 Масло Сеч. до 100 мм
<= 22 650…670 Нормализация 930…970
HV > 670 Азотирование
10 Сталь 7ХГ2ВМ <= 25 770…790 С печью до 550
28…30 860…875 560…580 Воздух Сеч. до 200 мм
58…61 210…230 Сеч. до 120 мм
11 Сталь 60С2А <= 22 840…860 С печью
44…51 850…870 420…480 Масло Сеч. до 20 мм
12 Сталь 35ХГС <= 22 880…900 С печью до 500…650
50…53 870…890 180…200 Масло
13 Сталь 50ХФА 25…33 850…880 580…600 Масло
51…56 850…870 180…200 Сеч. до 30 мм
53…59 180…220 880…940 Водный раствор 0,2…0,7% поли-акриланида
14 Сталь ШХ15 <= 18 790…810 С печью до 600
59…63 840…850 160…180 Масло Сеч. до 20 мм
51…57 300…400
42…51 400…500
15 Сталь У7, У7А НВ <= 187 740…760 С печью до 600
44…51 800…830 300…400 Вода до 250, масло Сеч. до 18 мм
55…61 200…300
61…64 160…200
61…64 160…200 Масло Сеч. до 5 мм
16 Сталь У8, У8А НВ <= 187 740…760 С печью до 600
37…46 790…820 400…500 Вода до 250, масло Сеч. до 60 мм
61…65 160…200
61…65 160…200 Масло Сеч. до 8 мм
61…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
17 Сталь У10, У10А НВ <= 197 750…770
40…48 770…800 400…500 Вода до 250, масло Сеч. до 60 мм
50…63 160…200
61…65 160…200 Масло Сеч. до 8 мм
59…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
18 Сталь 9ХС <= 24 790…810 С печью до 600
45…55 860…880 450…500 Масло Сеч. до 30 мм
40…48 500…600
59…63 180…240 Сеч. до 40 мм
19 Сталь ХВГ <= 25 780…800 С печью до 650
59…63 820…850 180…220 Масло Сеч. до 60 мм
36…47 500…600
55…57 280…340 Сеч. до 70 мм
20 Сталь Х12М 61…63 1000…1030 190…210 Масло Сеч. до 140 мм
57…58 320…350
21 Сталь Р6М5 18…23 800…830 С печью до 600
64…66 1210…1230 560…570 3-х кратн. Масло, воздух В масле до 300…450 град., воздух до 20
26…29 780…800 Выдержка 2…3 часа, воздух
22 Сталь Р18 18…26 860…880 С печью до 600
62…65 1260…1280 560…570 3-х кратн. Масло, воздух В масле до 150…200 град., воздух до 20
23 Пружин. сталь Кл. II 250…320 После холодной навивки пружин 30-ть минут
24 Сталь 5ХНМ, 5ХНВ >= 57 840…860 460…520 Масло Сеч. до 100 мм
42…46 Сеч. 100..200 мм
39…43 Сеч. 200..300 мм
37…42 Сеч. 300..500 мм
НV >= 450 Азотирование. Сеч. св. 70 мм
25 Сталь 30ХГСА 19…27 890…910 660…680 Масло
27…34 580…600
34…39 500…540
«— 770…790 С печью до 650
26 Сталь 12Х18Н9Т <= 18 1100…1150 Вода
27 Сталь 40ХН2МА, 40ХН2ВА 30…36 840…860 600…650 Масло
34…39 550…600
28 Сталь ЭИ961Ш 27…33 1000…1010 660…690 Масло 13Х11Н2В2НФ
34…39 560…590 При t>6 мм вода
29 Сталь 20Х13 27…35 1050 550…600 Воздух
43,5…50,5 200
30 Сталь 40Х13 49,5…56 1000…1050 200…300 Масло

Термообработка цветных металлов

Сплавы на основе других металлов не отвечают на закалку столь же ярко, как стали, но их твердость тоже можно повысить термообработкой. Обычно используют сочетание закалки и предварительного отжига (нагрева выше точки фазового превращения с медленным охлаждением).

  • Бронзы (сплавы меди) подвергают отжигу при температуре чуть ниже температуры плавления, а потом закалке с охлаждением водой. Температура закалки от 750 до 950С в зависимости от состава сплава. Отпуск при 200-400С производят в течение 2-4 часов. Наибольшие показатели твердости, до HV300 (около HRC 34) можно при этом получить для изделий из бериллиевых бронз.
  • Твердость серебра можно повысить отжигом до температуры, близкой к температуре плавления (тусклый красный цвет) с последующей закалкой.
  • Различные сплавы никеля подвергают отжигу при 700-1185С, такой широкий диапазон определяется разнообразием их составов. Для охлаждения используют соляные растворы, частички которых потом удаляют водой либо защитные газы, препятствующие окислению (сухой азот, сухой водород).

Оборудование и материалы

Для нагрева металла при термообработке используются 4 основных типа печей:
— соляная электродная ванна
— камерная печь
— печь непрерывного горения
— вакуумная печь

В качестве закалочных сред, в которых происходит охлаждение, используются жидкости (вода, минеральное масло, специальные водополимеры (Термат), растворы солей), воздух и газы (азот, аргон) и даже легкоплавкие металлы. Сам агрегат, где происходит охлаждение, называется закалочная ванна и представляет собой емкость, в которой происходит ламинарное перемешивание жидкости. Важной характеристикой закалочной ванны является качество удаления паровой рубашки.

Старение и другие методы повышения твердости

Старение — еще один вид термообработки, позволяющий повысить твердость сплавов алюминия, магния, титана, никеля и некоторых нержавеющих сталей, которые подвергают предварительной закалке без полиморфного превращения. В процессе старения увеличиваются твердость и прочность, а пластичность понижается.

  • Сплавы алюминия, например, дуралюмины (4-5% меди) и сплавы с добавлением никеля и железа выдерживают в пределах часа при температуре 100-180С
  • Сплавы никеля подвергают старению в 2-3 этапа, что в сумме занимает от 6 до 30 часов при температурах от 595 до 845С. Некоторые сплавы подвергают предварительной закалке при 790-1220С. Детали из никелевых сплавов помещают в дополнительный контейнеры, чтобы предохранить от контакта с воздухом. Для нагрева используют электрические печи, для мелких деталей могут применяться соляные электродные ванны.
  • Мартенситно-стареющие стали (высоколегированные безуглеродистые сплавы железа) стареют около 3 часов при 480-500С после предварительного отжига при 820С

Химико-термическая обработка - насыщение поверхностного слоя легирующими элементами,

  • неметаллическими: углеродом (цементация) и азотом (азотирование) применяются для повышения износостойкости колен, валов, шестерней из низкоуглеродистых сталей
  • металлическими: например, кремнием (силицирование) и хромом помогает повысить износо- и коррозионную стойкость деталей

Цементирование и азотирование производят в шахтных электропечах. Существуют также универсальные агрегаты, позволяющие проводить весь спектр работ по термохимической обработке стальных изделий.

Обработка давлением (наклеп) — увеличение твердости в результате пластической деформации при относительно низких температурах. Таким образом происходит упрочнение низкоуглеродистых сталей при холодной объемной штамповке, а также чистых меди и алюминия.

В процессе термической обработки изделия из стали могут претерпевать поразительные превращения, приобретая износостойкость и твердость, в разы большую чем у исходного материала. Диапазон изменения твердости сплавов из цветных металлов при термической обработке гораздо меньше, но их уникальные свойства зачастую и не требуют масштабного улучшения.

Закалкой стали называют такую операцию термической обработки, при которой стальные детали нагревают до температуры, несколько выше критической, выдерживают при этой температуре и затем быстро охлаждают в воде или масле.

Основное назначение закалки - получение стали с высокими твердостью, прочностью, износостойкостью и другими свойствами. Качество закалки зависит от температуры и скорости нагрева, времени выдержки и скорости охлаждения.

Температуру нагрева под закалку для большинства сталей, в том числе и легированных, определяют по положению критических точек А с1 и А с3 . Для углеродистых сталей температуру закалки можно легко установить по диаграмме железо - углерод .

Быстрорежущие, нержавеющие и другие специальные стали закаливают при более высоких температурах нагрева, чем углеродистые и низколегированные конструкционные и инструментальные. Например, для нержавеющей стали марки 4Х13 температура под закалку берется равной 1050 - 1100°С.

Скорость нагрева

Закалочные среды.

Скорость охлаждения стали в зависимости от закалочных сред

Из таблицы видно, что в 10-процентном водном растворе едкого натра или поваренной соли скорость охлаждения стали в области трооститных превращений (600-600°С) в два раза больше скорости охлаждения в пресной воде. В области мартенситных превращений (300-200°С) соленая и пресная вода охлаждают сталь почти одинаково. Это преимущество водных растворов солей используется в практике термической обработки. Однако термисты чаще всего применяют 5-10-процентный раствор поваренной соли, так как он не разъедает сталь и не действует на руки рабочих, как обезжиривающий едкий натр (каустик).

Для закалки инструмента из сталей У10, У12 водные растворы, чтобы уменьшить коробление стальных деталей, обычно подогревают до 30°С.

В отличие от воды закаливающая способность масла мало зависит от температуры, а скорость охлаждения в масле во много раз меньше, чем в воде. Поэтому, чтобы уменьшить напряжение и избежать образования закалочных трещин, для закалки легированных сталей с более низкой теплопроводностью, чем у углеродистых сталей, используют минеральное масло - веретенное № 2 и 3. При отсутствии масла рекомендуется применять горячую воду (80°С).

Для получения стабильных результатов при закалке необходимо пользоваться одним сортом масла, периодически меняя его или освежая.

Следует отметить, что в процессе охлаждения при закалке в воде вокруг деталей образуется проводником тепла, то скорость охлаждения стали резко уменьшается. Кроме того, паровая рубашка ухудшает прокаливаемость стали, приводит к появлению мягких пятен на поверхности закаливаемых деталей, а иногда и трещин. Поэтому опытные термисты обычно закаливают детали в циркулирующей воде, непрерывно перемещая их в вертикальном или горизонтальном направлениях.

Внутренние напряжения.

В процессе термической обработки, вследствие неодновременности превращений и теплового расширения и сжатия, в разных точках обрабатываемой детали возникают внутренние напряжения. Напряжения могут превосходить не только предел упругости или предел текучести, но и сопротивление разрушению. В последнем случае внутренние напряжения образуют трещины или даже разрушают деталь.

Внутренние напряжения могут быть двух видов - термические и структурные. Термические внутренние напряжения возникают вследствие неравномерности, охлаждения поверхности детали и ее внутренних слоев.

Если деталь имеет сплошное сечение, то при любом охлаждении поверхность охлаждается быстрее, а сердцевина - медленнее. В результате во время охлаждения деталь будет иметь разные температуры и разный удельный объем в разных точках по сечению. Эта разность температур будет тем больше, чем больше отличаются скорость охлаждения на поверхности от скорости охлаждения в центре детали.

Стали, легированные хромом, молибденом, вольфрамом, обладают меньшей теплопроводностью, чем углеродистые, и при закалке скорость их охлаждения на поверхности детали и в центре будет весьма большая.

Для уменьшения скорости охлаждения при закалке и снижения напряжений в них такие детали из легированной стали подвергаются медленному охлаждению только в масле или струе воздуха.

Структурные внутренние напряжения, как и термические Напряжения, возникают вследствие неодновременности превращений во время охлаждения металла и вследствие различных структурныхпревращений в разных точках сечения детали.

Так, при охлаждении высокоуглеродистой стали, нагретой выше критической точки, аустенит превращается в мартенсит и эти превращения сопровождаются изменением объема (образование мартенсита всегда увеличивает объем). Поверхностные слои, где превращения заканчиваются рано, охлаждаясь, испытывают растягивающие напряжения от промежуточной зоны, в которой превращения продолжаются. С течением времени превращения охватывают все более глубокие слои в детали и доходят до сердцевины. Но этим превращениям в сердцевине препятствуют наружные остывшие слои. Следовательно, в сердцевине нарастают сжимающие напряжения, а с поверхности растягивающий момент наибольшей разности напряжений всегда опасен, так как часто вызывает появление в металле трещин. Установлено, что трещины вызывают не сжимающие напряжения, а растягивающие.

На величину остаточных напряжений влияет ряд факторов. Наиболее существенными из них являются: свойства стали (прокаливаемость, температура мартенситного превращения, коэффициент линейного расширения), среда и условия охлаждения, а также форма и размер детали.

Способы закалки.

Под способами закалки подразумевают способы охлаждения деталей в закалочном баке и выбор закалочного охлаждения для получения заданной структуры металла. Чем сложнее по форме деталь, тем серьезнее следует подходить к выбору ее охлаждения. Резкие переходы в сечениях деталей, способствуют различных способов закалки, концентрации внутренних напряжений. Поэтому нужно выбирать такой способ закалки, чтобы детали получались с хорошей твердостью, необходимой структурой и без трещин.

Основными способами закалки стали являются: закалка в одном охладителе, в двух средах, струйчатая, с самоотпуском, ступенчатая и изотермическая закалки.

Закалка в одном охладителе -наиболее простой и распространенный способ. Деталь, нагретую до температуры закалки, погружают в закалочную жидкость, где она находится до полного охлаждения. Этот способ используют при закалке несложных деталей, изготовленных из углеродистых и легированных сталей. Детали из углеродистых сталей охлаждаются в воде (за исключением деталей диаметром не более 3-5 мм); а детали из легированных сталей - в масле. Можно использовать такой способ и при механизированной закалке, когда детали автоматически поступают из агрегата в закалочную жидкость.

Для высокоуглеродистых сталей такой способ закалки неприемлем, так как в процессе закалки создаются большие внутренние напряжения. Высокоуглеродистые стали закаливают с подстуживанием, т. е. нагретую деталь перед охлаждением некоторое время выдерживают на воздухе. Это уменьшает внутренние напряжения в деталях и гарантирует их от образования трещин.

Закалка в двух средах, или прерывистая закалка , - это способ, при котором деталь сначала охлаждают в одной закалочной быстроохлаждающей среде - воде, а затем переносят ее в медленноохлаждающую среду - масло. Он применяется при закалке инструмента, изготовленного из высокоуглеродистой стали.

Недостаток прерывистой закалки заключается в том, что трудно установить время пребывания детали в первой охлаждающей жидкости, так как оно очень незначительно (1 сек. на каждые 5-6 мм диаметра или толщины детали). Излишняя выдержка в воде ведет к увеличению коробления и появлению трещин.

Применение прерывистой закалки требует от термиста высокой квалификации и опыта.

Струйчатая закалка осуществляется охлаждением деталей, нагретых до температуры закалки, струей воды. Такой способ применяют для закалки внутренних поверхностей, высадочных штампов, матриц и другого штампового инструмента, у которого рабочая поверхность должна иметь структуру мартенсита.

При струйчатой закалке паровая рубашка не образуется, что обеспечивает более глубокую прокаливаемость, чем при простой закалке в воде. Скорость охлаждения при этом зависит от температуры, напора воды, диаметра и количества отверстий в брызгале и от угла, образованного струей воды с охлаждаемой поверхностью детали.

Закалка с самоотпуском - это способ, заключающийся в том, что детали выдерживают в охлаждающей среде не до полного охлаждения, т. е. в определенный момент охлаждение прекращают, чтобы сохранить в сердцевине детали тепло, необходимое для самоотпуска. Этот момент устанавливается опытным путем, поэтому качество термической обработки будет во многом зависеть от мастерства термиста.

Контроль за температурой отпуска при этом способе закалки осуществляется по цветам побежалости, возникающим на светлой поверхности детали. Появление цветов побежалости при температуре 200-300°С объясняется образованием на поверхности стали тонкой пленки окисла, цвет которого зависит от его толщины. Например, за небольшой промежуток времени при 220°С сталь покрывается слоем окисла, толщиной 400-450 ангстрем, который придает поверхности светло-желтый цвет.

Закалку с самоотпуском применяют только для закалки ударного инструмента - зубил, бородков, кернов и т.. д., так как у такого инструмента твердость должна равномерно и постепенно понижаться (от рабочей части к хвостовой).

Ступенчатая закалка - это такой способ, при котором нагретые детали охлаждают в медленно охлаждающей закалочной среде (например, расплавленная соль, горячее масло), имеющей температуру для данной стали выше мартенситной точки М н. За время короткой выдержки в горячей среде (масле) температура выравнивается, причем это происходит раньше, чем начинается мартенситное превращение. После этого осуществляется окончательное, обычно медленное охлаждение, во время которого деталь закаливается.

Ступенчатая закалка способствует уменьшению внутренних напряжений, происходящих благодаря незначительной скорости охлаждения. В результате уменьшается деформация деталей и почти полностью исключается возможность появления закалочных трещин.

Ступенчатую закалку широко применяют в массовом производстве, особенно при изготовлении инструмента. Она позволяет править и рихтовать детали в горячем состоянии, так как в момент превращения сталь обладает большой пластичностью.

Для ступенчатой закалки целесообразнее всего использовать глубоко прокаливающиеся углеродистые и легированные стали марок 9ХС, ХГ, ХВГ и др.

Изотермическая закалка - это способ, состоящий в нагреве деталей до заданной температуры и охлаждении в изотермической среде до 220-350°С, что несколько превышает температуру начала мартенситного превращения.

Выдержка деталей в закалочной среде при такой закалке должна быть достаточной для полного превращения аустенита в игольчатый троостит. После этого производится охлаждение на воздухе. При изотермической закалке выдержка при температуре ступеньки значительно больше, чем при ступенчатой закалке.

Закалочные среды для изотермической закалки те же, что и для ступенчатой. После изотермической закалки сталь приобретает высокую твердость и более высокую вязкость.

При изотермической закалке необходима достаточно высокая и равномерная скорость охлаждения, что достигается применением ванн с интенсивно перемешивающейся закалочной средой.

Изотермическую закалку используют при термической обработке, когда нужно получить детали с максимальной прочностью, достаточной пластичностью и вязкостью. Наиболее целесообразно применять изотермическую закалку для тех сталей, которые имеют небольшую устойчивость аустенита в области изотермической выдержки.

Дефекты, возникающие при закалке. В процессе закалки при охлаждении стали в результате структурных превращений и изменения объема металла появляются внутренние напряжения. Эти напряжения приводят к следующим дефектам: образованию трещин, деформации и короблению, изменению объема стали, обезуглероживанию и окислению, появлению мягких пятен, низкой твердости и перегреву.

Закалочные трещины - это неисправимый брак, образующийся в процессе термической обработки. В крупных деталях, например в матрицах и ковочных штампах, закалочные трещины могут появляться даже при закалке в масле. Поэтому такие детали целесообразно охлаждать до 150-200°С с быстрым последующим отпуском.

Трещины возникают при неправильном нагреве (перегреве), большой скорости охлаждения и при несоответствии химического состава стали.

Закалочные трещины возникают также при неправильной конструкции деталей, резких переходах, грубых рисках, оставшихся после механической обработки, острых углах, тонких стенках и т. д.

Закалочные трещины образуются чаще всего при слишком резком охлаждении или нагреве в результате возникающих в деталях внутренних напряжений. Это часто наблюдается при закалке легированных сталей. Поэтому детали из этих сталей нагревают медленнее, чем из углеродистых, и более равномерно.

Закалочные трещины обычно располагаются в углах деталей и имеют дугообразный или извилистый вид.

В заводской практике часто встречаются поверхностные трещины, которые обычно располагаются в виде сплошной или разорванной сетки. Такие трещины возникают в процессе поверхностной закалки при нагреве токами высокой частоты или газопламенной закалки, когда охлаждение ведется слишком холодной водой, а также при перегреве металла.

Поверхностные трещины могут возникать не только в процессе термообработки, но и при шлифовании закаленных деталей, если они были неправильно отпущены.

Равномерный отпуск после закалки и правильные режимы шлифования полностью устраняют возникновение трещин.

Во избежание бравсе участки (части) деталей, на которыхобычно появляются трещины, обматывают асбестовым шнуром и замазывают огнеупорной глиной. Строгое выполнение технологических режимов закалки может сократить количество бракованных деталей до минимума.

Деформация и коробление деталей происходят в результате неравномерных структурных и связанных с ними объемных превращений и возникновения внутренних напряжений при охлаждении.

При закалке стали, коробление во многих случаях происходит и без значительных объемных изменений, в результате неравномерного нагрева и охлаждения деталей. Если, например, деталь небольшого сечения и большой длины нагревать только с одной стороны, то она изгибается, нагретая сторона при этом удлиняется благодаря тепловому расширению и становится выпуклой, а противоположная - вогнутой. При одностороннем охлаждении в процессе закалки (особенно в воде) быстро охлажденная сторона детали за счет теплового сжатия станет вогнутой, а обратная сторона - выпуклой. Следовательно, нагревать и охлаждать детали при закалке следует равномерно.

На деформацию особенно большое влияние оказывает способ охлаждения. Поэтому при погружении деталей и инструмента в закалочную среду надо учитывать их форму и размеры. Например, детали, имеющие толстые и тонкие части, погружают в закалочную среду сначала толстой частью, длинные осевые детали (ходовые винты, штоки, протяжки, сверла, метчики и т. д.) - в строго вертикальном положении, а тонкие плоские детали (диски, отрезные фрезы, пластинки и др.) - ребром.

Очень большое значение для уменьшения деформаций и коробления деталей имеют правильно выбранные и изготовленные приспособления.

При газовой цементации и нитроцементации зубчатых колес, шлицевых и шестеренных валиков, поршневых пальцев, крестовин и других деталей простой и сложной конфигурации применяются специальные и универсальные приспособления.

Для цементации рессорных пальцев используются приспособления с отверстиями.

Шестеренные валики обычно подвергаются химико-термической обработке в универсальных приспособлениях.

При массовом производстве для каждой детали изготовляются специальные приспособления. Стоимость их изготовления быстро окупается. При серийном производстве, когда обрабатываются большие партии разнообразных деталей, более экономично иметь универсальные приспособления.

Приспособления изготовляются литые и сварные из жароупорного сплава Х18Н25С2.

Многие детали - зубчатые колеса, диски, плиты во избежание коробления закаливаются в специальных прессах в штампах.

Обезуглероживание происходит в основном при нагреве в электрических печах и жидких средах (соляных ваннах). Обезуглероживание инструмента - самый серьезный дефект при закалке, так как он в несколько раз снижает стойкость инструмента. Однако заметить такой дефект на готовом инструменте трудно.

На деталях из конструкционных сталей окисление и обезуглероживание легко обнаружить при изготовлении микрошлифа.

Мягкие пятна - это участки на поверхности детали или инструмента с пониженной твердостью. Причинами такого дефекта могут быть наличие на поверхности деталей окалины и загрязнений, вызванных соприкосновением деталей друг с другом в процессе охлаждения в закалочной среде, участки с обезуглероженной поверхностью или недостаточно быстрое движение деталей в закалочной среде (паровая рубашка). Мягкие пятна полностью устраняются при струйчатой закалке и в подсоленной воде.

Низкая твердость чаще всего наблюдается при закалке инструмента. Причинами низкой твердости являются недостаточно быстрое охлаждение в закалочной среде, низкая температура закалки, а также малая выдержка при нагреве под закалку. Чтобы исправить этот дефект, детали или инструмент сначала подвергают высокому отпуску при температуре 600-625°С, а затем - нормальной закалке.

Перегрев при закалке вызывает крупнозернистую структуру с блестящим изломом и, следовательно, ухудшает механические свойства стали. Для измельчения зерна и подготовки структуры для повторной закалки перегретую сталь необходимо подвергать отжигу.

Недогрев получается в том случае, если температура закалки была ниже критической точки А С3 -для доэвтектоидных сталей и А с - заэвтектоидных сталей.

При недогреве структура закаленной стали состоит из мартенсита и зерен феррита, который, как известно, имеет низкую твердость.

Недогрев можно исправить отжигом с последующей нормальной закалкой.

Быстрорежущие, нержавеющие и другие специальные стали закаливают при более высоких температурах нагрева, чем углеродистые и малолегированные конструкционные и инструментальные. Например, для нержавеющей стали марки 4Х13 температура под закалку берется равной 1050 - 1100°С.

Быстрорежущую сталь Р18 закаливают при температуре 1260 - 1280°С (для инструмента диаметром 10 - 15 мм - сверл, разверток и т. д.) и 1280 - 1300°С (для инструмента простой формы - резцов). Такая высокая температура нагрева под закалку быстрорежущей стали необходима для того, чтобы полнее растворить избыточные карбиды и больше перевести их в твердый раствор хрома, вольфрама, ванадия и других легирующих элементов, входящих в состав стали.

Скорость нагрева . Нагрев стали определяется не только допустимой, но и возможно скоростью нагрева. Допустимая скорость должна быть такой, чтобы нагрев не вызывал больших напряжений, приводящих к образованию трещин в деталях.

Скорость нагрева зависит от формы детелей, типа нагревательных печей и нагревательной среды. Напрмер, шар нагревается в три раза, а цилиндр - в два раза медленнее, чем пластинка. С увеличением скорости нагрева производительность нагревательных печей и агрегатов тоже повышается.

Скорость нагрева зависит также от расположения деталей в печи. Если детали плотно распологаютя одна к другой и мешают необходимому доступу тепла, то потребуется больше времени для их прогрева.

Для расчета времени нагрева деталей термисты обычно пользуются технологическими картами.

В технологическую карту входит перечень всех операций обработки детали или группы деталей с указанием подробных данных по этим операциям (температура, время выдержки, среда и температура охлаждения и применяемые приспособления).

Среднее время нагрева деталей из углеродистых сталей под закалку в различных средах.

Время нагрева деталей под закалку в различных средах

Для проведения любого теплового процесса термической обработки нужно не только нагревать металл до заданной температуры, но и выдерживать при этой температуре до полных структурных превращений (растворения карбидов, гомогенизации аустенита) и полного прогрева деталей. Таким образом, общее время пребывания деталей в нагревательной среде состоит из времени нагрева и времени выдержки.

Закалочные среды. Для охлаждения стальных деталей при закалке обычно применяют различные закалочные среды: воду, водные растворы солей, расплавленные соли, минеральные масла и т. д. Закалочные среды резко отличаются друг от друга по своим физическим свойствам, т. е. они с разной интенсивностью отнимают тепло от нагретых под закалку деталей.

Наилучшей закалочной средой считается та, которая быстро охлаждает сталь в интервале температур 650-500°С (область наименьшей устойчивости аустенита) и медленно - ниже 300-200°С (область мартенситного превращения). Однако единой, универсальной закалочной среды пока еще нет, поэтому на практике пользуются различными средами.

  • 6. Определение твёрдости методом Бринелля (см. Лр№ 1).
  • 7. Определение твёрдости методом Роквелла (см. Лр№ 2).
  • 8.Понятие о сплаве, компоненте, фазе, системе.
  • 9.Диаграмма состояния двойного сплава «свинец-сурьма».
  • 10. Диаграмма состоянияжелезоуглеродистых сплавов системы «железо-цементит»
  • 11. Структурные составляющие железоуглеродистых сплавов.
  • 12. Исходные материалы и продукты доменной плавки.
  • 13. Доменная печь, ее устройство и работа.
  • 14. Получение стали в кислородных конвертерах.
  • 15. Белые чугуны, их область применения.
  • 16. Серые чугуны, их маркировка и область применения.
  • 17. Высокопрочные чугуны, их маркировка и область применения.
  • 18. Ковкие чугуны, их маркировка и область применения.
  • 19. Углеродистые конструкционные качественные стали, маркировка и область применения.
  • 20. Углеродистые инструментальные стали, маркировка и область применения.
  • 21. Легированные стали, их классификация и маркировка.
  • 22. Латуни и бронзы, их маркировка и область применения.
  • 23. Алюминиевые сплавы, их маркировка и область применения.
  • 24. Коррозия металлов, её виды и методы борьбы с ней.
  • 25. Антифрикционные сплавы, их маркировка и область применения.
  • 26. Металлокерамические твердые сплавы, их маркировка и область применения.
  • 27. Отжиг и нормализация. Виды отжига.
  • 28. Закалка. Виды закалок.
  • 29. Отпуск. Виды отпуска.
  • 30. Химико-термическая обработка, ее виды.
  • 31. Модельный комплект, его назначение и состав.
  • 32. Литье в многократные (постоянные) метал­лические формы (кокили)
  • 33. Центробежное литье
  • 34. Литье в оболочковые формы.
  • 35. Точное литье по выплавляемым моделям
  • 36. Сущность обработки под давлением. Пластическая деформация металлов.
  • 37. Явление возврата и рекристаллизации.
  • 38. Понятие о прокатном производстве. Прокатка, ее виды.
  • 39. Прессование, виды прессования.
  • 40. Волочение, применяемое оборудование, получаемая продукция.
  • 41. Ковка, виды операций ковки, применяемое оборудование.
  • 43. Металлургические процессы при сварке. Сварочные напряжения и деформации, причины их появления и методы предупреждения.
  • 44. Электродуговая сварка, сущность процесса, применяемое оборудование.
  • 45. Виды электродов, их покрытие.
  • 46. Дуговая сварка под флюсом и в среде защитных газов. Электрошлаковая сварка.
  • 47. Исходные материалы для газовой сварки.
  • 48. Оборудование и принадлежности для газовой сварки и резки.
  • 49. Технология газовой сварки и резки
  • 50. Пайка, сущность процесса. Припои, флюсы их назначение и состав.
  • 51. Основные части и элементы резца.
  • 52. Углы резца.
  • 53. Элементы режима резания при точении.
  • 54. Устройство токарно-винторезного станка.
  • 55. Устройство горизонтально-фрезерного станка.
  • 56. Процесс сверления и его особенности.
  • 57. Электроискровая обработка металлов.
  • 58. Термореактивные пластмассы, их виды, состав и применение.
  • 59.Состав и классификация лакокрасочных материалов.
  • 60.Состав и классификация клеевых материалов.
  • 61. Общие сведения о резине. Резиновые смеси, их состав.
  • 62.Общие сведения о древесине, её физико-механические свойства.
  • 63.Разновидности древесных материалов
  • 64.Прокладочные материалы.
  • 28. Закалка. Виды закалок.

    Закалка – нагрев стали выше температуры фазовых превращений с последующим охлаждением по определённому режиму для получения нужной структуры и повышения твердости и прочности.

    Процесс закалки стали заключается в ее нагреве до определенной температуры (на 30…50° выше линии GSKпо диаграммеFе -Fе 3 С), выдержке и последующем быстром охлаждении в воде, масле, расплавленных солях или других средах.

    Доэвтектоидные стали надо на­гревать примерно на 30...50° выше критической точки А с3 (линияGS):tзак= А с3 + 30…50°С

    Заэвтектоидные стали следует нагревать под закалку выше А с1 (линияSK) на 30...50°.

    Масла имеют скорость охлаждения в интервале мартенситного превращения в 10 раз меньшую, чем вода, что уменьшает возможность возникновения дефектов при закалке.

    Существуют следующие виды закалок:

    Закалка в одном охладителе - самая распространен­ная - нагретое до температуры закалки изделие погружают в охлаж­дающую среду до полного охлаждения. (угле­родистые стали в воде, а легированные стали - в масле). Этот способ прост, но может вызвать значительные внутренние на­пряжения.

    Прерывистая закалка (закалка в двух средах) при­меняется для предупреждения появления внутренних напряжений в изделии. Этот способ используют при закалке крупных изделий из конструк­ционной углеродистой и низколегированной стали. Нагретое до нужной температуры изделие сначала резко охлаждают в воде до 300...200 °С, затем переносят в масло или на воздух, где оно медленно охлаждается. Недостаток - трудность регулирования времени вы­держки.

    Ступенчатая закалка - на­гретое изделие охлаждают, погружая в соляную ванну, температура которой превышает температуру начала мартенситного превращения данной стали. Затем изде­лие выдерживают в ванне для выравнивания темпера­туры по всему его объему и охлаждают на воздухе до нормальной температуры, что снижает внутренние на­пряжения. Её приме­няют для тонких стальных изделий из углеродистой стали.

    Закалка с самоотпуском (закалка по цветам побежалости) заключается в том, что изделие охлаждают от температуры закалки в охлаждающей среде только в течение времени, которое необходимо для его прока­ливания на определенную глубину. Дальнейшее охлаж­дение идет на воздухе. При этом осуществляется отпуск за счет теплоотдачи из внутренних слоев изделия. Дан­ный способ применяют для закалки ударного инстру­мента (зубила, кузнечный инструмент и др.).

    Поверхностная закалка применяется для увеличения износостойкости, твёрдости и прочности деталей, воспринимающих ударную нагрузку (зубчатые колеса, валы и др.). Она включает нагрев по­верхностного слоя изделия до температуры закалки и охлаждение для получения мартенситной структуры в поверхностном слое при сохранении вязкой сердцевины.

    Различают следующие виды нагрева при поверхност­ной закалке: нагрев пламенем газовой горелки и нагрев токами высокой частоты.

    29. Отпуск. Виды отпуска.

    Отпуск - это нагрев закаленной стали до температуры ниже критической А с1 , выдержка при этой температуре и последующее охлаждение (обычно на воздухе).

    Различают следующие виды отпуска: низкий, средний, высокий.

    Низкий отпуск - нагрев закаленной стали до 250°С для снижения внутренних напряжений при сохранении высокой твердости. Его применяют для инструментов и изделий, которые должны обладать высокой твердостью и износостойкостью. Получаемая структура – мартенсит отпуска.

    Средний отпуск - нагрев закаленной стали до 350...450°С, который приводит к пони­жению твердости и повышению вязкости стали по срав­нению с низким отпуском. Получаемая микроструктура троостит. Его применяют для пру­жин, штампов, рессор, ударного инструмента и др.

    Высокий отпуск - нагрев закаленной стали до 450...650°С, который способствует по­лучению наибольшей вязкости при сохранении доста­точно высокой прочности. Твердость закаленной стали сильно снижается и обра­зуется структура сорбит. Закалку деталей машин на мартенсит с последую­щим высоким отпуском на сорбит назы­вают улучшением. Сорбит отпуска с зернистой формой цементита имеет более высокие показатели прочности и вязкости, чем сорбит закалки с пластинчатой формой цементита.

    Обработка холодом - заключается в обработке закаленных изделий холодом при температурах порядка - 80°С и ниже. Об­работка холодом основана на том, что остаточный аустенит, находящийся в структуре закаленной стали при низких температурах, распадается в результате возникновения внутренних на­пряжений. Данный метод повышает твердость режущего инструмента, стабилизирует размеры измерительных ин­струментов и др. В промышленности применяют спе­циальные установки, в которых охладителями служат жидкий кислород (-183 °С), жидкий азот (-195 °С), смесь из твердой углекислоты (сухой лед) с денатурированным спиртом (-78,5 °С).

    
    Top