Есть ли гравитация на марсе. Ученые составили самую подробную гравитационную карту марса

О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники. С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна.

Мы знаем, что силой тяжести называется сила, с которой Земля притягивает различные тела.

Сила тяжести всегда направлена к центру планеты. Сила тяжести сообщает телу ускорение, которое называется ускорением свободного падения и численно равно 9,8м/с 2 . Это значит, что любое тело, независимо от его массы при свободном падении (без сопротивления воздуха) изменяет свою скорость за каждую секунду падения на 9,8 м/с.

Используя формулу для нахождения ускорения свободного падения

Масса планет M и их радиус R известны благодаря астрономическим наблюдениям и сложным расчетам.

а G - гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736 1024 кг, радиус R = 6,371 106 м), мы получим g=6,6742 * 10 *5,9736 / 6,371*6,371 = 9,822м/с 2

Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с 2 , а в технических расчётах обычно принимают g = 9,81 м/с 2 .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Благодаря притяжению к Земле течет вода в реках. Человек, подпрыгнув, опускается на Землю, потому что Земля притягивает его. Земля притягивает к себе все тела: Луну, воду морей и океанов, дома, спутники и т. п. Благодаря силе тяжести облик нашей планеты непрерывно меняется. Сходят с гор лавины, движутся ледники, обрушиваются камнепады, выпадают дожди, текут реки с холмов на равнины.

Все живые существа на земле чувствуют ее притяжение. Растения также «чувствуют» действие и направление силы тяжести, из-за чего главный корень всегда растет вниз, к центру земли, а стебель вверх.

Земля и все остальные планеты, движущиеся вокруг Солнца, притягиваются к нему и друг к другу. Не только Земля притягивает к себе тела, но и эти тела притягивают к себе Землю. Притягивают друг друга и все тела на Земле. Например, притяжение со стороны Луны вызывает на Земле приливы и отливы воды, огромные массы которой поднимаются в океанах и морях дважды в сутки на высоту нескольких метров. Притягивают друг друга и все тела на Земле. Поэтому ВЗАИМНОЕ ПРИТЯЖЕНИЕ ВСЕХ ТЕЛ ВСЕЛЕННОЙ НАЗЫВАЕТСЯ ВСЕМИРНЫМ ТЯГОТЕНИЕМ.

Чтобы определить силу тяжести, действующую на тело любой массы, необходимо ускорение свободного падения умножить на массу этого тела.

F = g * m ,

где m-масса тела, g – ускорение свободного падения.

Из формулы видно, что значение силы тяжести увеличивается с увеличением массы тела. Так же видно, что сила тяжести зависит также от величины ускорения свободного падения. Значит, делаем вывод: для тела неизменной массы значение силы тяжести меняется с изменение ускорения свободного падения.

Используя формулу для нахождения ускорения свободного падения g=GМ/R 2

Мы можем рассчитать значения g на поверхности любой планеты. Масса планет M и их радиус R известны благодаря астрономическим наблю¬дениям и сложным расчетам. где G - гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).

Планеты издавна делились учеными на две группы. Первая – это планеты земного типа: Меркурий, Венера, Земля, Марс, с недавних пор – Плутон. Для них характерны относительно небольшие размеры, малое количество спутников и твердое состояние. Оставшиеся – Юпитер, Сатурн, Уран, Нептун – планеты-гиганты, состоящие из газообразного водорода и гелия. Все они движутся вокруг Солнца по эллиптическим орбитам, отклоняясь от заданной траектории, если рядом проходит планета-сосед.

Наша «первая космическая станция» - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Она составляет 0,38 g от земной, это примерно в два раза меньше. Это значит, что на красной планете можно скакать и прыгать гораздо выше, чем на Земле, и все тяжести весить будут также значительно меньше. Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь определим, напряжение силы тяжести на Луне. Масса Луны, как мы знаем, в 81 раз меньше массы Земли. Если бы Земля обладала такой маленькой массой, то напряжение силы тяжести на ее поверхности было бы в 81 раз слабее, чем теперь. Но по закону Ньютона шар притягивает так, словно вся его масса сосредоточена в центре. Центр Земли отстоит от ее поверхности на расстоянии земного радиуса, центр Луны – на расстоянии лунного радиуса. Но лунный радиус составляет 27/100 земного, а от уменьшения расстояния в 100/27 раза сила притяжения увеличивается в (100/27) 2 раз. Значит, в конечном итоге напряжение силы тяжести на поверхности Луны составляет

100 2 / 27 2 * 81 = 1 / 6 земного

Любопытно, что если бы на Луне существовала вода, пловец чувствовал бы себя в лунном водоеме так же, как на Земле. Его вес уменьшился бы в шесть раз, но во столько же раз уменьшился бы и вес вытесняемой им воды; соотношение между ними было бы такое же, как на Земле, и пловец погружался бы в воду Луны ровно на столько же, на сколько погружается он у нас.

ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце 273,1

Меркурий 3,68-3,74

Венера 8,88

Земля 9,81

Луна 1,62

Церера 0,27

Марс 3,86

Юпитер 23,95

Сатурн 10,44

Уран 8,86

Нептун 11,09

Плутон 0,61

Как видно из таблицы, почти идентичное значение ускорения свободного падения присутствует на Венере и составляет 0,906 от земной.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):


А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 20000 Н и было бы мгновенно раздавлено собственной тяжестью.

Если нам предстоит космическое путешествие по планетам Солнечной системе, то нужно быть готовым к тому, что наш вес будет меняться. Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании. Сила притяжения сыграет важную роль и при будущей колонизации того же Марса.

Каждый из нас когда-либо задумывался о жизни вне Земли, однако не каждый знает о том, какую роль в жизнеспособности тела играет его магнитное поле. Гипотеза ученых о том, что жизнь на Марсе возможна, имеет веские основания. Какие для этого необходимы условия, и какую роль в жизнеобеспечении играет магнитное поле, читаем ниже.


Магнитное поле Марса

Магнитное поле представляет собой некую защитную оболочку, отклоняющую все негативные воздействия ветра, электрических зарядов Солнца или других планет. Такое защитное поле имеет не каждая планета, оно продуцируется внутренними тепловыми и динамическими процессами, происходящими центре ядра космического тела. Частицы расплавленного металла, находясь в движении, создают электроток, наличие которого на планете участвует в создании защитного слоя.

Магнитное поле Марса однозначно существует, оно распределено очень слабо и неравномерно. Это объясняется неподвижностью остывшего ядра относительно поверхности. На планете есть места, где проявление поля в несколько раз превышает силу воздействия на других участках четвертой планеты. Магнитометром Mars Global Surveyor было установлено наличие наиболее сильного магнитного поля на южных участках, в то время как на северной стороне оно прибором практически не было установлено.

Магнитное поле у Марса ранее было достаточно сильным, оно имеет остаточный характер, сохраняя так называемый палеомагнетизм. Этого поля недостаточно для защиты от излучений Солнца или воздействия ветров. Таким образом, незащищенная поверхность не оставляет возможности задерживаться ни воде, ни другим частицам.

На вопрос было ли магнитное поле у Марса, и есть ли оно сейчас, можно уверенно дать положительный ответ. Наличие небольшого поля на соседней планете говорит о том, что оно существовало и ранее, имея большую, нежели сегодня силу.

Почему Марс потерял магнитное поле

Есть теория, согласно которой еще 4 млрд. лет назад магнитное поле красной планеты было достаточно сильным. Оно было схоже с земным и стабильно распределялось на поверхности его коры.

Столкновение с неким космическим телом больших размеров, или, как утверждают некоторые исследователи, несколькими крупными астероидами, повлияло на внутренние динамические процессы ядра. перестало продуцировать электротоки, вследствие чего, поле Марса ослабло, его распределение стало неоднородным: оно стало усилено на одних участках, другие остаются незащищенными. В этих местах Солнца в два с половиной раза сильнее, чем на Земле.

Насколько сильна гравитация на Марсе?

В силу слабого и неравномерно распределенного магнитного поля, гравитация на Марсе имеет столь же низкие параметры. Если быть точнее, сравнительно с земной силой притяжения, она на 62% слабее. Поэтому все субъекты, находящиеся здесь в разы теряют свою истинную массу.

Сила притяжения на Марсе зависит от нескольких параметров: массы, радиуса, а также плотности. Несмотря на то, что площадь Марса приближается к показателям площади Земли, существуют большие различия плотности и диаметров планет, масса Марса на 89% меньше земной.

Имея данные двух схожих планет, учеными была вычислена сила притяжения Марса, которая достаточно отличается от земной. Сила гравитации на Марсе так же ослаблена, как и магнитное поле. Низкая гравитация перестраивает работу живого существа. Поэтому длительное пребывание человека на Красной плане может негативным образом сказаться на здоровье. Если будет найден путь преодоления последствий слабого притяжения на здоровье человека, время освоения других планет стремительно приблизится.

Помимо силы тяготения, на самой планете существует величина — гравитационная постоянная, показывает силу тяготения между планетами. Она вычисляется относительно двух планет, Марса и Земли, Марса и Солнца отдельно с учетом расстояния между ними. Эта величина является основополагающей, так как от силы тяготения планет зависит и расстояние между ними.

Расчет марсианской гравитации

Чтобы найти силу гравитации на Марсе, нужно применить формулу:
G = m(земли) m(Марса) /r2
Здесь – это гравитационная постоянная, r – это расстояние от центров Земли и Марса.
Подставив значения, получим
5.97 1024 0.63345 6.67 10-11 /3.488=3.4738849055214
Таким образом, значение марсианской гравитации равно 3.4738849055214 Н.

Почему на Марсе по-другому

Сила тяжести Марса относительно Земли зависит от размера планет, массы и расстояния между их центрами. Планета с большей массой оказывает наибольшую степень гравитационного притяжения. Таким образом, Земля, имея наибольшую массу, оказывает наибольшую силу притяжения относительно Марса. По мере увеличения расстояния между планетами, сила гравитации между ними уменьшается.

Гравитация Земли, имея высокие показатели, способна с большей силой, нежели на Марсе притягивать объекты. Таким образом, земная гравитация, по сравнению с марсианской, позволяет сохранять жизнедеятельность и жизнеспособность на Земле. В то время как на Марсе низкая сила тяготения не удерживает на поверхности планеты даже воду.

Сравнительный анализ характера силы притяжения на Марсе относительно силы тяготения Земли, позволяет ответить на вопрос, почему на Марсе нет такого магнитного поля, как на Земле.

Несмотря на схожесть двух планет: площади, наличие полярных шапок, схожего наклона оси вращения и климатических изменений, Марс и Земля имеют весомые различия. Показатель давления на Марсе на 99 992.5 миллибар ниже давления на Земле. Сезонная температура Марса во много раз ниже, чем на Земле. Так, зимой был зарегистрирован минимальный показатель -143 градуса, летом поверхность разогревается до 35 градусов тепла.

Ученые заняты рассмотрением условий, при которых жизнь на четвертой от Солнца будет возможна. На данный момент исследований Красной планеты недостаточно, чтобы собрать данные , так как низкое магнитное поле и сила гравитации усложняют пребывание человека на планете, точнее подвергают его организм нежелательным изменениям, что вряд ли совместимо с жизнью.

С технической точки зрения полет человека на Марс представляется на нынешнем этапе развития космонавтики не более сложным мероприятием, чем в свое время экспедиция на Луну . Специалисты считают, что сама техника практически готова к организации первой межпланетной экспедиции. Но прежде чем марсианская пилотируемая миссия состоится, ученым предстоит решить многочисленные медико-биологические проблемы. Более того, сегодня уже очевидно, в разработке стратегии марсианского проекта человеческий фактор будет главным приоритетом, а человек — наиболее уязвимым звеном миссии, в значительной степени определяющим саму возможность ее реализации.

Медико-биологическое обеспечение марсианской пилотируемой экспедиции является новой задачей для ученых. Использование многих хорошо себя зарекомендовавших принципов, методов и средств медико-биологического обеспечения орбитальных пилотируемых полетов для марсианской миссии неприемлемо. Среди особенностей межпланетного полета — в частности, иные условия коммуникации с Землей, чередование гравитационных воздействий и ограниченный период адаптации к гравитации перед началом деятельности на поверхности Марса, повышенная радиация, отсутствие магнитного поля.

Выполненный еще в конце прошлого века 438-суточный орбитальный полет на станции «Мир » врача-космонавта Валерия Полякова показал отсутствие принципиальных медико-биологических ограничений для длительных космических миссий. В настоящее время не выявлено существенных изменений в организме человека, которые могли бы препятствовать дальнейшему планомерному увеличению продолжительности космических полетов и выполнению марсианской экспедиции, — подчеркивает директор Института медико-биологических проблем академик Анатолий Григорьев .

Иное дело проблема защиты космонавтов от галактического и солнечного космического излучения, которые значительно возрастут за пределами земной магнитосферы. За два года полета суммарная доза радиации может в два раза превысить допустимую. Поэтому предстоит разработать специальную противорадиационную защиту. В настоящее время разработчики склонны отдать приоритет конструкционной защите: баки с топливом, водой и другими запасами располагаются вокруг жилого отсека. При этом обеспечивается защита примерно в 80—100 г/см 2 .

Космонавты могут серьезно облучиться и когда будут находиться на поверхности Марса. Измерения, выполненные российским прибором ХЕНД, установленным на американском аппарате Mars Odyssey , показали, что во время солнечных вспышек интенсивность потока нейтронов, отраженных от поверхности планеты, может возрастать в несколько сотен раз и достигать смертельных для космонавтов доз. Следовательно, они могут высаживаться на марсианскую поверхность только в периоды солнечного «затишья».

Другая проблема — питание космонавтов. Казалось бы, практика отработана годами. Экипаж космического корабля ждут те же, что и сегодня, сублимированные (высушенные) продукты. Достаточно добавить воды, разогреть — и на стол. Однако, как бы ни были хороши и вкусны эти продукты, их необходимо разнообразить более привычной пищей. Идея завести на корабле птиц, чтобы космонавты питались яйцами, отпала. Как показали эксперименты, новорожденные птенцы так и не смогли адаптироваться к невесомости. Проще оказалось с рыбами и моллюсками, но они растут слишком медленно, и вряд ли космонавты смогут питаться свежей рыбой на пути к Марсу. Что можно сказать с полной уверенностью — на борту межпланетного корабля будет оранжерея. Правда, небольшая.

Специалистами Института медико-биологических проблем сконструирован прототип «космического огорода». Он представляет собой цилиндр, в котором помещена связка валиков, пропитанных удобрениями. Внутренняя его поверхность покрыта сотнями красных и синих диодов, играющих роль солнечных лучей. Валики поворачиваются по мере роста растений, приближая их верхушки к источнику света. Пока на одних валиках зелень только прорастает, с других уже можно снимать урожай. Опытный образец установки позволяет получать около 200 граммов зелени каждые четыре дня. С увеличением числа валиков и источников света производительность машины возрастает. Помимо обеспечения едой «космическое сельское хозяйство» поможет решить и проблему регенерации атмосферы на борту межпланетного корабля.

Далее, — проблемы воды. Подсчитано, что в сутки космонавту требуется 2,5 литра воды. Так что несколько ее тонн на борту должно быть. Часть воды с помощью систем регенерации будет возвращаться в оборот. Идеальный вариант — создание на корабле замкнутых физико-химических систем, с помощью которых достигается полный круговорот веществ. Но, по-видимому, это — дело достаточно отдаленного будущего.

Есть задачи и психологического характера. Из-за большого расстояния до Марса радиосигнал только в одну сторону будет распространяться 20—30 мин. Центру управления просто не хватит времени, чтобы вмешаться при возникновении нештатных ситуаций. Земля, в лучшем случае, станет консультантом, а основной процесс принятия решений переместится на борт корабля.

И, прежде чем стартует марсианская пилотируемая экспедиция, многие из этих проблем ученые попытаются разрешить в ходе российского эксперимента «Марс-500». Это будет не настоящий полет, но очень точная его имитация: экипаж из шести человек проведет 520 дней в наземном комплексе, состоящем из пяти герметичных, сообщающихся между собой модулей. Один из них будет имитировать поверхность Марса.

Модули напичканы аппаратурой, регистрирующей всевозможные параметры внутри них и отслеживающей медицинские показатели у испытателей. Для ученых важно будет понять, как действуют люди в команде в обстановке, приближенной к условиям марсианского полета. Все результаты — от того, как складывались отношения в коллективе, до рациона питания — будут анализироваться специалистами. Это позволит учесть максимум возможных ситуаций, которые могут возникнуть в реальном полете, и способствовать их разрешению.

На сегодняшний день желающих участвовать в «наземном межпланетном полете» набралось уже достаточно много — в основном мужчины. В какой-то степени это объяснимо: уже выяснилось, что у женщин по физиологическим и психологическим качествам гораздо меньше шансов, чем у мужчин, первыми ступить на Марс. В эксперименте будут участвовать шесть человек, хотя в реальном полете к планете в состав экспедиции войдут только четыре человека.

Примечательно, что вскоре, после того как в России было объявлено об эксперименте «Марс-500», в США также стали набирать добровольцев для имитационного полета. Правда, испытатели проведут в нем лишь четыре месяца.

Like Love Haha Wow Sad Angry

21 марта 2016 года NASA представило на своем сайте новую наиболее подробною на сегодняшний день карту гравитации Марса, позволяющую заглянуть в скрытый интерьер Красной планеты.

«Гравитационные карты позволяют нам заглянуть внутрь планеты, подобно рентгену, который использует врач, чтобы увидеть внутренности пациента. Новая гравитационная карта будет полезна для будущего исследования Марса, потому что знания о гравитационных аномалиях помогут будущим миссиям более точно выходить на орбиту планеты. Кроме того, улучшенное разрешение нашей карты поможет понять тайны формирования некоторых регионов Марса», – сказал Антонио Дженова из Массачусетского технологического института, ведущий автор публикации об исследовании.

Улучшенная гравитационная карта предлагает новое объяснение того, как формируются некоторые особенности границы, отделяющей относительно пологие северные низменности от сильно кратерированного южного нагорья. Также команда исследователей путем анализа приливов в марсианской коре и мантии, вызванных гравитационным притяжением Солнца и двух спутников, подтвердила, что Марс имеет жидкое внешнее каменное ядро. И, наконец, наблюдая за изменением гравитации Марса в течение последних 11 лет, команда обнаружила огромное количество углекислого газа, который вымораживается из атмосферы над марсианскими полярными шапками в зимний период.

Карта марсианской гравитации. Взгляд на Северный полюс. Белым и красным цветом обозначены регионы с наибольшей гравитацией. Синий цвет обозначает районы с более низкой гравитацией. Credits: MIT/UMBC-CRESST/GSFC

Карта была получена с помощью сети из трех космических аппаратов, кружащих на орбите Марса: Mars Global Surveyor (MGS), Mars Odyssey (ODY) и Mars Reconnaissance Orbiter (MRO). Как и на других планетах, сила притяжения Марса ощущается космическими аппаратами, и их орбита немного изменяется. Например, притяжение над горой будет немного сильнее, а над каньоном – чуть слабее.

Незначительные изменения траектории полетов аппаратов фиксировались и отсылались на Землю. Именно эти колебания использовались для построения карты гравитационного поля Красной планеты.

Карта марсианской гравитации. Взгляд на Южный полюс. Белым и красным цветом обозначены регионы с наибольшей гравитацией. Синий цвет обозначает районы с более низкой гравитацией. Credits: MIT/UMBC-CRESST/GSFC

«С новой картой мы смогли увидеть малые гравитационные аномалии около 100 километров в поперечнике. Мы определили мощность коры Марса с разрешением примерно 120 километров. Лучшее разрешение поможет интерпретировать, как кора планеты изменялась во многих регионах за марсианскую историю», – добавил Антонио Дженова.

Например, область с более низкой гравитацией между Acidalia Planitia и Tempe Terra объясняется системой подземных каналов, которые доставили воду и отложения из южного нагорья к северной низменности миллиарды лет назад, когда марсианский климат был влажным.

Карта марсианской гравитации, показывающая вулканический регион Tharsis. Синие регионы с наименьшей гравитацией могут быть трещинами в литосфере Марса. Credits: MIT/UMBC-CRESST/GSFC

Альтернативное объяснение этой аномалии заключается в том, что она может быть связана с прогибом или изгибом литосферы, внешнего слоя Марса, в связи с образованием области Tharsis. Эта область представляет собой вулканическое плато, простирающееся на тысячи километров и содержащее крупнейшие вулканы в Солнечной системе. Когда вулканы росли, литосфера прогибалась под их огромным весом.

Новая гравитационная карта позволила команде подтвердить мнение, что Марс имеет внешнее жидкое каменное ядро, а также уточнить измерения марсианских приливов и отливов.

Изменения в марсианской гравитации ранее измерялись миссиями MGS и ODY по наблюдению за полярными льдами. MRO был впервые применен для мониторинга массы планеты. Ученые определили, что в зимний период из атмосферы вымораживается 3-4 триллиона тонн углекислого газа, из которого и формируются полярные шапки. Это примерно от 12 до 16 процентов массы всей атмосферы Марса.

Like Love Haha Wow Sad Angry

Роман Захаров
главный редактор

Общеизвестно, что Земля имеет форму шара, сплюснутого у полюсов. Поэтому вес одного и того же тела (определяемый силой притяжения) в различных местах планеты неодинаков. Например, взрослый человек, переместившись из высоких широт к экватору, "потеряет в весе" около 0,5 кг. А какова сила тяжести на других планетах Солнечной системы?

Теория сэра Ньютона

Один из отцов-основателей классической механики, великий английский математик, физик и астроном Исаак Ньютон, изучая движение Луны вокруг нашей планеты, в 1666 году сформулировал Закон всемирного тяготения. По мнению ученого, именно сила тяготения лежит в основе движения всех тел в космосе и на Земле, будь то планеты, вращающиеся вокруг звезд, или яблоко, падающее с веток. Согласно Закону, сила притяжения двух материальных тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между телами.

Если вести речь о силе тяжести на Земле и других планетах или астрономических объектах, то из вышесказанного становится ясно, что она пропорциональна массе объекта и обратно пропорциональна квадрату его радиуса. Прежде чем отправиться в космическое путешествие, рассмотрим гравитационные силы на нашей планете.

Вес и масса

Несколько слов о физических терминах. Теория классической механики утверждает, что гравитация возникает вследствие взаимодействия тела с космическим объектом. Силу, с которой это тело действует на опору или подвес, называют весом тела. Единица измерения этой величины - ньютон (Н). Вес в физике обозначают, как и силу, буквой F и вычисляют по формуле F=mg, где коэффициент g - ускорение свободного падения (у поверхности нашей планеты g=9,81 м/с 2).

Под массой понимают фундаментальный физический параметр, определяющий количество материи, заключенной в теле, и его инертные свойства. Традиционно измеряется в килограммах. Масса тела постоянна в любом уголке нашей планеты и даже Солнечной системы.

Если бы Земля имела строгую шарообразную форму, вес определенного предмета на различных географических широтах земной поверхности на уровне моря был бы неизменным. Но наша планета имеет форму эллипсоида вращения, причем полярный радиус на 22 км короче экваториального. Поэтому, согласно Закону всемирного тяготения, вес тела на полюсе будет на 1/190 больше, чем на экваторе.

На Луне и Солнце

Исходя из формулы, силу тяжести на других планетах и астрономических телах можно легко вычислить, зная их массу и радиус. Кстати, в основе способов и методов определения этих величин лежит все тот же Закон всемирного тяготения Ньютона и 3-й закон Кеплера.

Масса ближайшего к нам космического тела - Луны - в 81 раз, а радиус - в 3,7 раза меньше соответствующих земных параметров. Таким образом, вес любого тела на единственном естественном спутнике нашей планеты будет в шесть раз меньше, чем на Земле, при этом ускорение свободного падения будет иметь значение 1,6 м/с 2 .

На поверхности нашего светила (в районе экватора) этот параметр имеет значение 274 м/с 2 - максимальное в Солнечной системе. Здесь сила тяжести в 28 раз превосходит земную. Например, человек массой 80 кг имеет вес на Земле около 800 Н, на Луне - 130 Н, а на Солнце - более 22 000 Н.

В 2006 году астрономы мира условились считать, что в состав Солнечной системы входит восемь планет (Плутон причислили к карликовым планетам). Условно их принято разделять на две категории:

  • Земная группа (от Меркурия до Марса).
  • Гиганты (от Юпитера до Нептуна).

Определение силы тяжести на других планетах осуществляется по тому же принципу, что и для Луны.

В центре Солнечной системы

Космические объекты, принадлежащие к первой группе, расположены внутри орбиты пояса астероидов. Для этих планет характерно следующее строение:

  • Центральная область - горячее и тяжелое ядро, состоящее из железа и никеля.
  • Мантия, большую часть которой составляют ультраосновные магматические породы.
  • Кора, состоящая из силикатов (исключение - Меркурий). В связи с разряженностью атмосферы, его верхний слой сильно разрушен метеоритами).

Некоторые астрономические параметры и сила тяжести на других планетах кратко отражены в таблице.

Оперируя данными таблицы, можно определить, что сила тяжести на поверхности Меркурия и Марса в 2,6 раза меньше, чем на Земле, а на Венере вес космонавта будет меньше земного лишь на 1/10 часть.

Гиганты и карлики

Планеты-гиганты, или внешние планеты, располагаются за орбитой Главного пояса астероидов. В основе каждого из этих тел каменное ядро небольших размеров, покрытое громадной газообразной массой, состоящей преимущественно из аммиака, метана и водорода. Гиганты имеют малые периоды обращения вокруг своей оси (от 9 до 17 часов), и при определении гравитационных параметров необходимо учитывать действие центробежных сил.

Вес тела на Юпитере и Нептуне будет больше, чем на Земле, а вот на других планетах сила тяжести немного меньше земной. Эти объекты не имеют твердой или жидкой поверхности, поэтому расчеты ведутся для границы верхнего облачного слоя (см. таблицу).

Планеты-гиганты
Радиус орбиты (млн км) Радиус (тыс. км) Масса (кг) Ускорение своб. падения g (м/с 2) Вес космонавта (Н)
Юпитер 778 71 1,9×10 27 23,95 1677
Сатурн 1429 60 5,7×10 26 10,44 730
Уран 2871 26 8,7×10 25 8,86 620
Нептун 4504 25 1,0×10 26 11,09 776

(Примечание: данные по Сатурну во многих источниках (цифровых и печатных) весьма противоречивы).

В заключение несколько любопытных фактов, дающих наглядное представление о том, какая сила тяжести на других планетах. Единственное небесное тело, на котором побывали представители человечества, - Луна. По воспоминаниям американского астронавта Нила Армстронга, тяжелый защитный скафандр не мешал ему самому и его коллегам с легкостью совершать прыжки на высоту до двух метров - с поверхности до третьей ступеньки лестницы лунного модуля. На нашей планете такое же усилие привело лишь к прыжку на 30-35 см.

Вокруг Солнца обращается еще несколько карликовых планет. Масса одной из самых больших - Цереры - в 7,5 тыс. раз меньше, а радиус - в два десятка раз меньше земного. Сила тяжести на ней настолько слаба, что космонавт смог бы легко переместить груз массой около 2 тонн, а оттолкнувшись от поверхности "карлика", просто улетел бы в космическое пространство.


Top