I. История развития Интеллектуальных информационных систем

Краткая история искусственного интеллекта

Основные направления исследований в области искусственного интеллекта

Представление знаний и вывод на знаниях

Нечеткие знания

Прикладные интеллектуальные системы

1.1. Краткая история искусственного интеллекта

1.1.1. Предыстория

Идея создания искусственного подобия человека для решения сложных задач и моделирования человеческого разума витала в воздухе еще в древнейшие времена. Так, в древнем Египте была создана «оживающая» механическая статуя бога Амона. У Гомера в «Илиаде» бог Гефест ковал человекоподобные существа-автоматы. В литературе эта идея обыгрывалась многократно: от Галатеи Пигмалиона до Буратино папы Карло. Однако родоначальником искусственного интеллекта считается средневековый испанский философ, математик и поэт Раймонд Луллий, который еще в XIII веке попытался создать механическую машину для решения различных задач, на основе разработанной им всеобщей классификации понятий. В ХУШ веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Эти работы можно считать первыми теоретическими работами в области искусственного интеллекта. Окончательное рождение искусственного интеллекта как научного направления произошло только после создания ЭВМ в 40-х годах XX века. В это же время Норберт Винер создал свои основополагающие работы по новой науке - кибернетике.

Термин «искусственный интеллект» - ИИ - (AI - artificial intelligence) был предложен в 1956 г. на семинаре с аналогичным названием в Дартсмутском колледже (США). Семинар был посвящен разработке методов решения логических, а не вычислительных задач. В английском языке данное словосочетание не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть термин intellect.

Вскоре после признания искусственного интеллекта отдельной областью науки произошло разделение его на два направления: нейрокибернетика и «кибернетика черного ящика». Эти направления развиваются практически независимо, существенно различаясь как в методологии, так и в технологии. И только в настоящее время стали заметны тенденции к объединению этих частей вновь в единое целое.

Лекция 1

Введение. Понятие информационной системы и технологии, интеллектуальной информационной системы (ИИС). Исторические аспекты развития методов представления и обработки сигналов, методов построения систем обработки сигналов, их интеллектуализации. Отличие ИИС от традиционных информационных систем. Виды и характеристики интеллектуальных систем. Понятие и виды интеллектуального управления. Подходы к построению интеллектуальных информационных систем. Основные классы ИИС. Отличительные признаки каждого класса.

В современном мире рост производительности программиста практически достигается только в тех случаях, когда часть интеллектуальной нагрузки берут на себя компьютеры. Одним из способов достигнуть максимального прогресса в этой области является "искусственный интеллект", когда компьютер не только берет на себя однотипные, многократно повторяющиеся операции, но и сам может обучаться. Кроме того, создание полноценного "искусственного интеллекта" открывает перед человечеством новые горизонты развития.

Прежде чем начать рассмотрение вопросов построения работоспособных интеллектуальных информационных систем, обратимся к некоторым определениям и основным понятиям темы.

Информация – сведения об объектах, явлениях и событиях, процессах окружающего мира, передаваемые устным, письменным или иным способом и уменьшающие неопределенность знаний о них.

Информация должна быть достоверной, полной, адекватной, т.е. иметь определенный уровень соответствия, краткой, ясно и понятно выраженной, своевременной и ценной.

Система – совокупность элементов, объединенная связями между ними и обладающая определенной целостностью. Т.е., система – это совокупность взаимодействующих взаимосвязанных элементов, объединенных некоторой целью и общими (целенаправленными) правилами взаимоотношений.

Автоматические информационные системы выполняют все операции по переработке информации без участия человека.

Автоматизированные информационные системы предполагают участие в процессе обработки информации и человека, и технических средств, причем главная роль отводится компьютеру. В современном толковании в термин «информационная система» обязательно вкладывается понятие автоматизируемой системы. Следует различать понятия информационной системы и информационной технологии.

Информационная технология – приемы, способы и методы применения средств вычислительной техники при выполнении функций сбора, хранения, обработки и использования данных (по ГОСТ 34.003-90).

Информационная система – организационно упорядоченная совокупность документов и информационных технологий, в том числе и с использованием средств вычислительной техники и связи, реализующих информационные процессы.

Такое понимание информационной системы предполагает использование в качестве основного технического средства переработки информации ЭВМ и средств связи, реализующих информационные процессы и выдачу информации, необходимой в процессе принятия решений о задачах из любой области.

ИнфСист является средой, составляющими элементами которой являются компьютеры, компьютерные сети, программные продукты, БД, люди, различного рода технические и программные средства связи и т.д. Хотя сама идея ИС и некоторые принципы их организации возникли задолго до появления компьютеров, однако компьютеризация в десятки и сотни раз повысила эффективность ИС и расширила сферы их применения.

Под термином «система» понимается объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность взаимосвязанных разнородных элементов, работающих как единое целое. Системы значительно отличаются между собой как по составу, так и по главным целям. Это целое приобретает некоторое свойство, отсутствующее у элементов в отдельности.

Признаки системности описываются тремя принципами:

    Внешней целостности – обособленность или относительная обособленность системы в окружающем мире;

    Внутренней целостности – свойства системы зависят от свойств её элементов и взаимосвязей между ними. Нарушение этих взаимосвязей может привести к тому, что система не сможет выполнять свои функции;

    Иерархичности – в системе можно выделить различные подсистемы, с другой стороны сама система тоже может являться подсистемой другой более крупной системы или подсистемы.

В информатике понятие "система" широко распространено и имеет множество смысловых значений. Чаще всего оно используется применительно к набору технических средств и программ. Системой может называться аппаратная часть компьютера. Системой может также считаться множество программ для решения конкретных прикладных задач, дополненных процедурами ведения документации и управления расчетами.

В зависимости от конкретной области применения ИС могут очень различаться по своим функциям, архитектуре, реализации. Можно выделить основные свойства, которые являются общими для всех ИС :

    структура ИС, ее функциональное назначение должны соответствовать поставленным целям;

    ИС использует сети для передачи данных;

    так как любая ИС предназначена для сбора, хранения и обработки информации, то в основе любой ИС лежит среда хранения и доступа к данным. И поскольку задача ИС – производство достоверной, надежной, своевременной и систематизированной информации, основанной на использование БД, экспертных систем и баз знаний, то она должна обеспечивать требуемый уровень надежности хранения и эффективность доступа, которые соответствуют области применения ИС;

    ИС должна контролироваться людьми, ими пониматься и использоваться в соответствии с основными принципами, реализованными в виде стандарта предприятия или иного стандарта на ИС. Интерфейс пользователя ИС должен быть легко понимаем на интуитивном уровне.

Основные задачи информационных систем и разработчиков ИС:

    Поиск, обработка и хранение информации, которая долго накапливается и утрата которой невосполнима. Компьютеризованные ИС предназначены для более быстрой и надежной обработки информации, чтобы люди не тратили время, чтобы избежать свойственных человеку случайных ошибок, чтобы сэкономить расходы, чтобы сделать жизнь людей более комфортной;

    Хранение данных разной структуры. Не существует развитой ИС, работающей с одним однородным файлом данных. Более того, разумным требованием к информационной системе является то, чтобы она могла развиваться. Могут появиться новые функции, для выполнения которых требуются дополнительные данные с новой структурой. При этом вся накопленная ранее информация должна остаться сохраненной. Теоретически можно решить эту задачу путем использования нескольких файлов внешней памяти, каждый из которых хранит данные с фиксированной структурой. В зависимости от способа организации используемой системы управления файлами эта структура может быть структурой записи файла или поддерживаться отдельной библиотечной функцией, написанной специально для данной ИС. Известны примеры реально функционирующих ИС, в которых хранилище данных планировалось основывать на файлах. В результате развития большинства таких систем в них выделился отдельный компонент, который представляет собой разновидность системы управления базами данных (СУБД);

    Анализ и прогнозирование потоков информации различных видов и типов, перемещающихся в обществе. Изучаются потоки с целью их минимизации, стандартизации и приспособления для эффективной обработки на вычислительных машинах, а также особенности потоков информации, протекающей через различные каналы распространения информации;

    Исследование способов представления и хранения информации, создание специальных языков для формального описания информации различной природы, разработка специальных приемов сжатия и кодирования информации, аннотирования объемных документов и реферирования их. В рамках этого направления развиваются работы по созданию банков данных большого объема, хранящих информацию из различных областей знаний в форме, доступной для вычислительных машин;

    Построение процедур и технических средств для их реализации, с помощью которых можно автоматизировать процесс извлечения информации из документов, не предназначенных для вычислительных машин, а ориентированных на восприятие их человеком;

    Создание информационно-поисковых систем, способных воспринимать запросы к информационным хранилищам, сформулированные на естественном языке, а также специальных языках запросов для систем такого типа;

    Создание сетей хранения, обработки и передачи информации, в состав которых входят информационные банки данных, терминалы, обрабатывающие центры и средства связи.

Конкретные задачи, которые должны решаться информационной системой, зависят от той прикладной области, для которой предназначена система. Области применения информационных приложений разнообразны: банковское дело, управление производством, медицина, транспорт, образование и т.д. Введем понятие «предметная область» - фрагмент, выделенный из окружающего мира, называется областью экспертизы или предметной областью . Существует также множество задач и проблем, которые необходимо решать, используя сущности и отношения из этой предметной области, поэтому используется более широкое понятие - проблемная среда – это предметная область + решаемые задачи.

С двумя типами информационных систем мы будем знакомиться поближе. Это экспертные и интеллектуальные системы.

Экспертные системы (Expert System) – информационные консультирующие и\или принимающие решения системы, основанные на структурированных, часто плохо формализуемых процедурах, использующих опыт, интуицию, т.е. поддерживающие или моделирующие работу экспертов интеллектуальные особенности; системы используются как в долгосрочном, так и в краткосрочном оперативном прогнозировании, управлении.

Интеллектуальные системы или системы, основанные на знаниях (Knowleadge Based System) - системы поддержки задач принятия решения в сложных системах, где необходимо использование знаний в достаточно широком диапазоне, особенно в плохо формализуемых и плохо структурируемых системах, нечетких системах и при нечетких критериях принятия решения; эти системы наиболее эффективны и используемы для сведения проблем долгосрочного, стратегического управления к проблемам тактического и краткосрочного характера, повышения управляемости, особенно в условиях многокритериальности. В отличие от экспертных систем, в системах, основанных на знаниях, следует чаще избегать экспертных и эвристических процедур и прибегать к когнитивным процедурам для минимизации риска. Здесь более существенно влияние профессионализма персонала, ибо при разработке таких систем необходимо сотрудничество и взаимопонимание не только разработчиков, но и пользователей, менеджеров, а сам процесс разработки, как правило, происходит итерационно, итерационными улучшениями, постепенным преобразованием (переходом) процедурных знаний (как делать) в непроцедурные, декларативные (что делать).

Рассмотрим теперь вопрос интеллектуальности информационных систем.

Термининтеллект (intelligence) происходит от латинского intellectus, что означает "ум, рассудок, разум; мыслительные способности человека". Соответственноискусственный интеллект (artificial intelligence) - ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Можно сказать, чтоинтеллект - это способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразованиязнаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. Сам термин «искусственный интеллект» (artificial intelligence) был предложен в 1956 году на семинаре в Дартсмутском колледже (США). Слово intelligence, собственно, и означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть термин intellect.

В 1950 году британский математик Алан Тьюринг опубликовал в журнале «Mind» свою работу «Вычислительная машина и интеллект», в которой описал тест для проверки программы на интеллектуальность. Он предложил поместить исследователя и программу в разные комнаты и до тех пор, пока исследователь не определит, кто за стеной - человек или программа, считать поведение программы разумным. Это было одно из первых определений интеллектуальности, то есть А. Тьюринг предложил называть интеллектуальным такое поведение программы, которое будет моделировать разумное поведение человека. С тех пор появилось много определений интеллектуальных систем (ИнС) и искусственного интеллекта (ИИ). Приведем некоторые из этих определений. 1. ИИ определяется как область компьютерных наук, занимающуюся исследованием и автоматизацией разумного поведения. 2. другое определение: «ИИ - это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка». 3. ИС – это адаптивная система , позволяющую строить программы целесообразной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент в окружающей их среде. При этом адаптивная система определяется как система, которая сохраняет работоспособность при непредвиденных изменениях свойств управляемого объекта, целей управления или окружающей среды путем смены алгоритма функционирования, программы поведения или поиска оптимальных, в некоторых случаях просто эффективных, решений и состояний. Традиционно, по способу адаптации различают самонастраивающиеся, самообучающиеся и самоорганизующиеся системы.

Итак, применяя интеллектуальные системы, человек решает интеллектуальные задачи. Для определения отличия просто задачи от интеллектуальной задачи необходимо ввести понятие алгоритма. Под алгоритмом понимают точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин "алгоритм" происходит от имени узбекского математика Аль-Хорезми, который еще в IX веке предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Отыскание алгоритма для задач некоторого данного типа связано с тонкими и сложными рассуждениями, требующими большой изобретательности и высокой квалификации. Принято считать, что подобного рода деятельность требует участия интеллекта человека. Задачи, связанные с отысканием алгоритма решения класса задач определенного типа, будем называть интеллектуальными. Т.е. интеллектуальные задачи – это сложные плохо формализуемые задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

Разные исследователи по-разному определяют искусственный интеллект как науку, в зависимости от своего взгляда на нее, и работают над созданием систем, которые:

    думают подобно людям;

    думают рационально;

    действуют подобно людям;

    действуют рационально.

При воссоздании разумных рассуждений и действий возникают определенные трудности. Во-первых, в большинстве случаев, выполняя какие-то действия, человек не осознает, как это делает, не известен точный способ, метод или алгоритм понимания текста, распознавания лиц, доказательства теорем, решения задач, сочинения стихов и т.д. Во-вторых, на современном уровне развития компьютер слишком далек от человеческого уровня компетентности и работает по другим принципам.

Искусственный интеллект всегда был междисциплинарной наукой, являясь одновременно и наукой и искусством, и техникой и психологией. Методы искусственного интеллекта разнообразны. Они активно заимствуются из других наук, адаптируются и изменяются под решаемую задачу. Для создания интеллектуальной системы необходимо привлекать специалистов из прикладной области, поэтому в рамках искусственного интеллекта сотрудничают лингвисты, нейрофизиологи, психологи, экономисты, информатики, программисты и т.д.

История развития искусственного интеллекта

Идея создания искусственного подобия человека для решения сложных задач и моделирования человеческого разума витала в воздухе еще в древнейшие времена. Так, в Древнем Египте была создана «оживающая» механическая статуя бога Амона. У Гомера в «Илиаде» бог Гефест ковал человекоподобных существ.

Искусственный интеллект является в некотором смысле наукой будущего, в которой нет жесткого разделения по областям и ясно видна связь между отдельными дисциплинами, которые лишь отражают определенную грань познания.

Точный свод законов, руководящих рациональной частью мышления, был сформулирован Аристотелем (384-322 гг. до н.э.). Однако родоначальником искусственного интеллекта считается средневековый испанский философ, математик и поэт Раймонд Луллий, который еще в XIII веке попытался создать механическую машину для решения различных задач на основе разработанной им всеобщей классификации понятий. В XVIII веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Труды этих ученых можно считать первыми теоретическими работами в области искусственного интеллекта. Теория игр и теория принятия решений, данные о строении мозга, когнитивная психология – все это стало строительным материалом для искусственного интеллекта. Но окончательное рождение искусственного интеллекта как научного направления произошло только после создания ЭВМ в 40-х годах XX века и выпуска Норбертом Винером основополагающих работ по новой науке – кибернетике.

Формирование искусственного интеллекта как науки произошло в1956 году. Д. Маккарти, М. Минский, К. Шеннон и Н. Рочестер организовали двухмесячный семинар в Дартмуте для американских исследователей, занимающихся теорией автоматов, нейронными сетями, интеллектом. Хотя исследования в этой области уже активно велись, но именно на этом семинаре появились термин и отдельная наука – искусственный интеллект.

Одним из основателей теории искусственного интеллекта считается известный английский ученый Алан Тьюринг, который в 1950 году опубликовал статью «Вычислительные машины и разум» (переведенную на русский язык под названием «Может ли машина мыслить?»). Именно в ней описывался ставший классическим «тест Тьюринга», позволяющий оценить «интеллектуальность» компьютера по его способности к осмысленному диалогу с человеком.

Первые десятилетия развития искусственного интеллекта (1952- 1969 гг.)были полны успехов и энтузиазма. А. Ньюэлл, Дж. Шоу и Г. Саймон создали программу для игры в шахматы на основе метода, предложенного в 1950 году К. Шенноном, формализованного А. Тьюрингом и промоделированного им же вручную. К работе была привлечена группа голландских психологов под руководством А. де Гроота, изучавших стили игры выдающихся шахматистов. В 1956 году этим коллективом был создан язык программирования ИПЛ1 – практически первый символьный язык обработки списков и написана первая программа «Логик-Теоретик», предназначенная для автоматического доказательства теорем в исчислении высказываний. Эту программу можно отнести к первым достижениям в области искусственного интеллекта.

В 1960 году этой же группой была написана программа GPS (General Problem Solver) – универсальный решатель задач. Она могла решать ряд головоломок, вычислять неопределенные интегралы, решать некоторые другие задачи. Результаты привлекли внимание специалистов в области вычислений, и появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач.

С 1952 года А. Самюэл написал ряд программ для игры в шашки, которые играли на уровне хорошо подготовленного любителя, причем одна из них научилась играть лучше, чем ее создатель.

В 1958 году Д. Маккарти определил новый язык высокого уровня Lisp, который стал доминирующим для искусственного интеллекта.

Первые нейросети появились в конце 50-х годов. В 1957 году Ф. Розенблаттом была предпринята попытка создать систему, моделирующую человеческий глаз и его взаимодействие с мозгом, – персептрон.

Первая международная конференция по искусственному интеллекту (IJCAI) состоялась в 1969 году в Вашингтоне.

В 1963 году Д. Робинсон реализовал метод автоматического доказательства теорем, получивший название «принцип резолюции», и на основе этого метода в 1973 году был создан язык логического программирования Prolog.

В США появились первые коммерческие системы, основанные на знаниях, – экспертные системы. Происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения и интерес ксамообучающимся системам , создаются промышленные экспертные системы. Разрабатываются методы представления знаний.

Первая экспертная система была создана Э. Фейгенбаумом в 1965 году. Но до коммерческой прибыли было еще далеко. Лишь в 1986 году первая коммерческая система R1 компании DEC позволила сэкономить примерно 40 миллионов долларов за год. К 1988 году компанией DEC было развернуто 40 экспертных систем. В компании Du Pont применялось 100 систем, и экономия составляла примерно 10 миллионов в год.

В 1981 году Япония, в рамках 10-летнего плана по разработке интеллектуальных компьютеров на базе Prolog, приступила к разработке компьютера 5-го поколения, основанного на знаниях. 1986 год стал годом возрождения интереса к нейронным сетям.

В 1991 году Япония прекращает финансирование проекта компьютера 5-го поколения и начинает проект создания компьютера 6-го поколения – нейрокомпьютера.

В 1997 году компьютер «Дип Блю» победил в игре в шахматы чемпиона мира Г. Каспарова, доказав возможность того, что искусственный интеллект может сравняться с человеком или превзойти его в ряде интеллектуальных задач (пусть и в ограниченных условиях).

Огромную роль в борьбе за признание искусственного интеллекта в СССР сыграли академики А. И. Берг и Г. С. Поспелов.

В 1954-1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. Создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Кора» М. М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы искусственного интеллекта внесли выдающиеся ученые М. Л. Цетлин, В. Н. Пушкин, М. А. Гаврилов, чьи ученики и явились пионерами этой науки в России.

В 1964 году предлагался метод автоматического поиска доказательства теорем в исчислении предикатов, получивший название «обратный метод Маслова».

В 1965-1980 гг. произошло рождение нового направления – ситуационного управления (в западной терминологии соответствует представлению знаний). Основателем этой научной школы стал профессор Д. А. Поспелов.

В Московском государственном университете в 1968 году В. Ф. Турчиным был создан язык символьной обработки данных РЕФАЛ.

История искусственного интеллекта, если рассматривать его, как новое и научное направление, берет свое начало в XX веке. К тому времени уже было достаточно сформировано большое количество предпосылок для его зарождения.

Можно считать, что история искусственного интеллекта начинается с момента создания первых ЭВМ в 40-х г.г. С появлением электронных вычислительных машин, обладающих высокой (по меркам того времени) производительностью, стали возникать первые вопросы в области искусственного интеллекта: возможно ли создать машину, интеллектуальные возможности которой были бы тождественны интеллектуальным возможностям человека (или даже превосходили возможности человека).

Следующим этапом в истории искусственного интеллекта являются 50-е годы, когда исследователи пытались строить разумные машины, имитируя мозг. Эти попытки оказались безуспешными по причине полной непригодности, как аппаратных, так и программных средств. В 1956 г. состоялся семинар в Стэнфордском университете (США), где был впервые предложен термин искусственный интеллект - artificial intelligence.

60-е года в истории искусственного интеллекта отметились попытками отыскать общие методы решения широкого класса задач, моделируя сложный процесс мышления. Разработка универсальных программ оказалась слишком трудным и бесплодным делом. Чем шире класс задач, которые может решать одна программа, тем беднее оказываются ее возможности при решении конкретной проблемы. В этот период началось зарождение эвристического программирования.

Эвристическое программирование - разработка стратегии действий по аналогии или прецедентам. В целом, 50-60 гг. в истории искусственного интеллекта можно отметить как время поиска универсального алгоритма мышления.

Существенный прорыв в практических приложениях искусственного интеллекта произошел в 70-х гг., когда на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. В США появились первые коммерческие системы, основанные на знаниях, или экспертные системы. Пришел новый подход к решению задач искусственного интеллекта - представление знаний. Созданы «MYCIN» и «DENDRAL» - ставшие уже классическими экспертные системы для медицины и химии. Обе эти системы в определенном смысле можно назвать диагностическими, поскольку в первом случае («MYCIN») по ряду симптомов ставится диагноз, во втором - по ряду свойств определяется химическое соединение. В принципе, этот этап в истории искусственного интеллекта можно назвать рождением экспертных систем.

Ярким примером сложной интеллектуальной игры до недавнего времени являлись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снабженных соответствующими программами. Как известно, победу на этом турнире одержала советская машина с шахматной программой "Каисса".

Дело в том, что недавние события показали, что, несмотря на довольно большую сложность шахмат, и невозможность, в связи с этим произвести полный перебор ходов, возможность перебора их на большую глубину, чем обычно, очень увеличивает шансы на победу. К примеру, по сообщениям в печати, компьютер фирмы IBM, победивший Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100"000"000 ходов в секунду. До недавнего времени редкостью был компьютер, могущий делать такое количество целочисленных операций в секунду, а здесь мы говорим о ходах, которые должны быть сгенерированы и для которых просчитаны оценочные функции. Хотя с другой стороны, этот пример говорит о могуществе и универсальности переборных алгоритмов. Можно сказать, что все эти элементы интеллекта, продемонстрированные машиной в процессе игры в шашки, сообщены ей автором программы. Отчасти это так. Но не следует забывать, что программа эта не является "жесткой", заранее продуманной во всех деталях. Она совершенствует свою стратегию игры в процессе самообучения. И хотя процесс "мышления" у машины существенно отличен оттого, что происходит в мозгу, играющего в шашки человека, она способна у него выиграть.

Следующий значимый период в истории искусственного интеллекта - это 80-е года. На этом отрезке искусственный интеллект пережил второе рождение. Были широко осознаны его большие потенциальные возможности, как в исследованиях, так и в развитии производства. В рамках новой технологии появились первые коммерческие программные продукты. В это время стала развиваться область машинного обучения. До этих пор перенесение знаний специалиста-эксперта в машинную программу было утомительной и долгой процедурой. Создание систем, автоматически улучшающих и расширяющих свой запас эвристических (не формальных, основанных на интуитивных соображениях) правил - важнейший этап в последние годы. В начале десятилетия в различных странах были начаты крупнейшие в истории обработки данных, национальные и международные исследовательские проекты, нацеленные на «интеллектуальные вычислительные системы пятого поколения».

Раньше с понятием искусственного интеллекта (ИИ) связывали надежды на создание мыслящей машины, способной соперничать с человеческим мозгом и, возможно, превзойти его. Эти надежды, на долгое время захватившие воображение многих энтузиастов, так и остались несбывшимися. И хотя фантастические литературные прообразы «умных машин» создавались еще за сотни лет до наших дней, лишь с середины тридцатых годов, с момента публикации работ А. Тьюринга, в которых осуждалась реальность создания таких устройств, к проблеме ИИ стали относиться серьезно.

Для того, чтобы ответить на вопрос, какую машину считать «думающей», Тьюринг предложил использовать следующий тест: испытатель через посредника общается с невидимым для него собеседником человеком или машиной. «Интеллектуальной» может считаться та машина, которую испытатель в процессе такого общения не сможет отличить от человека.

Если испытатель при проверке компьютера на «интеллектуальность» будет придерживаться достаточно жестких ограничений в выборе темы и формы диалога, этот тест выдержит любой современный компьютер, оснащенный подходящим программным обеспечением. Можно было бы считать признаком интеллектуальности умение поддерживать беседу, но, как было показано, эта человеческая способность легко моделируется на компьютере. Признаком интеллектуальности может служить способность к обучению. В 1961 г. профессор Д. Мичи, один из ведущих английских специалистов по ИИ, описал механизм, состоящий из 300 спичечных коробков, который мог научиться играть в крестики и нолики. Мичиназвалэтоустройство MENACE (Matchbox Educable Naughts and Crosses Engine). В названии (угроза) заключается, очевидно, доля иронии, вызванной предубеждениями перед думающими машинами.

До настоящего времени единого и признанного всеми определения ИИ не существует, и это не удивительно. «Достаточно вспомнить, что универсального определения человеческого интеллекта также нет дискуссии о том, что можно считать признаком ИИ, а что нет, напоминают споры средневековых ученых о том, которых интересовало, сколько ангелов смогут разместиться на кончике иглы»1. Сейчас к ИИ принято относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как кто делал бы размышляющий над их решением человек.

Нейросети

Идея нейронных сетей родилась в ходе исследований в области искусственного интеллекта, а именно в результате попыток воспроизвести способность нервных биологических систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Основной областью исследований по искусственному интеллекту в 60-80е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на его представлении как манипуляций с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не охватывают некоторые ключевые аспекты работы человеческого мозга.

Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.

Мозг состоит из очень большого числа (приблизительно 1010) нейронов, соединенных многочисленными связями (в среднем несколько тысяч связей на один нейрон, однако это число может сильно колебаться). Нейроны - это специальные клетки, способные распространять электрохимические сигналы. Нейрон имеет разветвленную структуру ввода информации (дендриты), ядро и разветвляющийся выход (аксон). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему аксону. Через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).

Интенсивность сигнала, получаемого нейроном (а, следовательно, и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет протяженность, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение заключается в первую очередь в изменениях силы синоптических связей. Например, в классическом опыте. Павлова каждый раз перед кормлением собаки звонил колокольчик, и собака быстро научилась связывать звонок колокольчика с пищей.

Синоптические связи между участками коры головного мозга, ответственными за слух, и слюнными железами усилились, и при возбуждении коры звуком колокольчика у собаки начиналось слюноотделение.

Таким образом, будучи построен из очень большого числа совсем простых элементов (каждый из которых берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный уровень, передает дальше двоичный сигнал), мозг способен решать чрезвычайно сложные задачи. Определение формального классического нейрона дается следующим образом:

Он получает входные сигналы (исходные данные или выходные сигналы других нейронов сети) через несколько входных каналов. Каждый входной сигнал проходит через соединение, имеющее определенную интенсивность (или вес); этот вес соответствует синоптической активности биологического нейрона. С каждым нейроном связано определенное пороговое значение. Вычисляется взвешенная сумма входов, из нее вычитается пороговое значение и в результате получается величина активации нейрона.

Сигнал активации преобразуется с помощью функции активации (или передаточной функции) и в результате получается выходной сигнал нейрона.

Если при этом использовать ступенчатую функцию активации, то такой нейрон будет работать точно так же, как описанный выше естественный нейрон.

Нейросети в искусственном интеллекте

Работы по созданию интеллектуальных систем ведутся в двух направлениях. Сторонники первого направления, составляющие сегодня абсолютное большинство среди специалистов в области искусственного интеллекта, исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и проистекающие в ней процессы, присущие биологическим системам. Важно лишь то, что теми или иными средствами удается добиться тех же результатов в поведении, какие характерны для человека и других биологических систем.

Сторонники второго направления считают, что на чисто информационном уровне этого не удастся сделать. Феномены человеческого поведения, его способность к обучению и адаптации, по мнению этих специалистов, есть следствие именно биологической структуры и особенностей её функционирования.

У сторонников первого информационного направления есть реально действующие макеты и программы, моделирующие те или иные стороны интеллекта. Одна из наиболее ярких работ, представляющих первое направление, это программа «Общий решатель задач» А. Ньюэлла, И. Шоу и Г. Саймона. Развитие информационного направления шло от задачи о рационализации рассуждений путем выяснения общих приемов быстрого выявления ложных и истинных высказываний в заданной системе знаний. Способность рассуждать и находить противоречия в различных системах взаимосвязанных ситуаций, объектов, понятий является важной стороной феномена мышления, выражением способности к дедуктивному мышлению.

Результативность информационного направления бесґспорна в области изучения и воспроизведения дедуктивных мыслительных проявлений. Для некоторых практических задач этого достаточно. Информационное направление наука точная, строгая, вобравшая в себя основные результаты изысканий кибернетики и математическую культуру. Главные проблемы информационного направления ввести в свои модели внутреннюю активность и суметь представить индуктивные процедуры.

Одна из центральных проблем, это «проблема активных знаний, порождающих потребности в деятельности системы из-за тех знаний, которые накопились в памяти системы»1.

У сторонников второго биологического направления результатов пока существенно меньше, чем надежд. Одним из родоначальников биологического направления в кибернетике является У. Мак-Каллок. В нейрофизиологии установлено, что целый ряд функций и свойств у живых организмов реализованы с помощью определенных нейронных структур. На основе воспроизведения таких структур в ряде случаев получены хорошие модели, в особенности это касается некоторых сторон работы зрительного тракта.

Создание нейрокомпьютеров, моделирующих нейронные сети (НС), в настоящее время рассматривается как одно из наиболее перспективных направлений в решении проблем интеллектуализации вновь создаваемых ЭВМ и информационно-аналитических систем нового поколения.

В большей части исследований на эту тему НС представляется как совокупность большого числа сравнительно простых элементов, топология соединений которых зависит от типа сети. Практически все известные подходы к проектированию НС связаны в основном с выбором и анализом некоторых частных структур однородных сетей на формальных нейронах с известными свойствами (сети Хопфилда, Хемминга, Гроссберга, Кохоннена и др.) и некоторых описанных математически режимов их работы. В этом случае термин нейронные сети метафоричен, поскольку он отражает лишь то, что эти сети в некотором смысле подобны живым НС, но не повторяют их во всей сложности. Вследствие такой трактовки нейронные ЭВМ рассматриваются в качестве очередного этапа высоко параллельных супер-ЭВМ с оригинальной идеей распараллеливания алгоритмов решения разных классов задач. Сам термин нейронная ЭВМ нейрокомпьютер, как правило, никак не связан с какими-то ни было свойствами и характеристиками мозга человека и животных. Он связан только с условным наименованием порогового логического элемента как формального нейрона с настраиваемыми или фиксированными весовыми коэффициентами, который реализует простейшую передаточную функцию нейрона-клетки. Исследования в области создания нейроинтеллекта ведутся на различных уровнях: теоретический инструментарий, прототипы для прикладных задач, средства программного обеспечения НС, структуры аппаратных средств. Основными этапами на пути создания мозгоподобного компьютера являются выяснение принципов образования межэлементных связей и мозгоподобных системах адаптивных сетях с большим числом элементов, создание компактного многовходового адаптивного элемента аналога реального нейрона, исследование его функциональных особенностей, разработка и реализация программы обучения мозгоподобного устройства.

Брянский государственный технический университет Кафедра «Компьютерные технологии и системы» Введение в интеллектуальные системы Лектор: Шкаберин В.А. ЛИТЕРАТУРА 1. 2. 3. 4. 5. Базы знаний интеллектуальных систем / Т.А. Гаврилова, В.Ф. Хорошевский.-СПб.: Питер, 2001.-384 с.: ил. Искусственный интеллект: В 3 кн. Кн. 1. Системы общения и экспертные системы: Справочник / Под ред. Э.В. Попова.- М.: Радио и связь, 1990.-464 с.: ил. Искусственный интеллект.-В 3-х кн. Кн. 2. Модели и методы: Справочник/ Под ред. Д.А. Поспелова.-М.: Радио и связь, 1990.-304 с.: ил. П. Уинстон. Искуственный интеллект / Пер. с англ. В.Л.Стефанюка под ред. Д.А. Поспелова.- М.: Издательство «Мир», 1980.-520 с. Питер Джексон. Введение в экспертные системы.: Пер. с англ.: Уч. пос.-М.: Издательский дом «Вильямс», 2001.624 с.: ил.-Парал. тит. англ. СОДЕРЖАНИЕ: Краткая история искусственного интеллекта Предмет исследования и основные направления исследований в области искусственного интеллекта Трудно формализуемые задачи проектирования Краткая история искусственного интеллекта Идея создания искусственного подобия человека для решения сложных задач и моделирования человеческого разума возникла с древнейших времен (механическая статуя бога Амона в древнем Египте, бог Гефест в мифологии ковал человекоподобные существаавтоматы, Буратино и др.). Первые теоретические работы в области искусственного интеллекта Родоначальник искусственного интеллекта – средневековый испанский философ, математик и поэт Раймонд Луллий в XIII веке попытался создать механическую машину для решения различных задач на основе разработанной им всеобщей классификации понятий. Луллий Раймонд (1235 - 1316) Первые теоретические работы в области искусственного интеллекта (2) В XVIII веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Готфрид Лейбниц (1646-1716) Рене Декарт (1596 – 1650) Рождение искусственного интеллекта как научного направления произошло после создания ЭВМ в 40-х годах XX века. В это время Норберт Винер создал основополагающие работы по кибернетике. Норберт Винер (1894 - 1964) Рождение термина «искусственный интеллект» Термин ИИ – (AI – artifical intelligence (intelligence умение рассуждать разумно)) предложен в 1956 г. на семинаре в Дартсмутском колледже (США). В 1969 г. в Вашингтоне состоялась I Международная объединенная конференция по искусственному интеллекту. Она и узаконила в своем названии термин «искусственный интеллект». Направления искусственного интеллекта 1. Нейрокибернетика 2. Кибернетика «черного ящика» Зарождение нейрокибернетики Основная идея нейрокибернетики «Единственный объект, способный мыслить, человеческий мозг. Поэтому любое «мыслящее устройство» должно воспроизводить структуру человеческого мозга». Основная идея нейрокибернетики (2) Нейрокибернетика ориентирована на программно-аппаратное моделирование структур, подобных структуре мозга. Основа человеческого мозга – нейроны. Усилия сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы называют нейронными сетями или нейросетями. Создание первых нейросетей Первые нейросети созданы Френком Розенблаттом и МакКаллоком в 1956-1965 гг. Это были попытки смоделировать человеческий глаз и его взаимодействие с мозгом. Созданное устройство называлось персептроном и умело различать буквы алфавита. Персептивная модель (персептрон) Создание нейрокомпьютеров и транспьютеров В 1980-х годах в Японии в рамках проекта «ЭВМ V поколения» был создан первый нейрокомпьютер, или компьютер IV поколения. Появились транспьютеры – параллельные компьютеры с большим количеством процессоров. Транспьютерная технология – один из десятка новых подходов к аппаратной реализации нейросетей, которые моделируют иерархическую структуру мозга человека. Основная область применения нейрокомпьютеров – задачи распознавания образов, например идентификация объектов по результатам аэрофотосъемки из космоса. Подходы к созданию нейросетей Аппаратный – создание компьютеров, нейрочипов, микросхем, реализующих необходимые алгоритмы. Программный – создание программ и инструментариев, рассчитанных на высокопроизводительные компьютеры. Сети создаются в памяти компьютера. Гибридный – часть вычислений выполняют специальные платы расширений, часть – программные средства. Кибернетика «Черного ящика» Основная идея кибернетики «черного ящика» «Не имеет значение, как устроено «мыслящее» устройство. Главное, чтобы на заданные входные воздействия оно реагировало так же, как человеческий мозг». Основная идея кибернетики «черного ящика» (2) Главная ориентация этого направления ИИ – поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров. Существенный вклад в становление новой науки внесли Джон Маккарти (автор первого языка для задач ИИ- ЛИСП), Марвин Минский (автор идеи фреймовой модели представления знаний), Саймон, Шоу и др. В 1956-1963 г.г. активно велись поиски моделей и алгоритмов человеческого мышления и разработки первых программ на их основе. Были созданы и опробованы различные подходы: Модель лабиринтного поиска (конец 50-х годов). Задача представлялась как некоторое пространство состояний в форме графа, в котором проводится поиск оптимального пути от входных данных к результирующим. Для решения практических задач не нашли широкого применения. Программы описаны в первых учебниках по ИИ – они играют в 15, в шашки, шахматы и др. Эвристическое программирование (начало 60-х годов) – разработка стратегии действий на основе известных, заранее заданных эвристик. Эвристика – правило, теоретически необоснованное, позволяющее сократить количество переборов в пространстве поиска. Использование методов математической логики (1963-1970 г.г.) для решения задач ИИ. Робинсон разработал метод резолюций, который позволяет автоматически доказывать теоремы при наличии набора исходных аксиом. Отечественный ученый Маслов Ю.С. предложил обратный вывод, решающий аналогичную задачу другим способом. На основе метода резолюций француз Альбер Кольмероэ в 1973 г. создал язык логического программирования Пролог. Ньюэл, Саймон и Шоу создали программу «Логик-теоретик», которая доказывала школьные теоремы. Однако логические модели имеют существенные ограничения по классам решаемых задач, т.к. реальные задачи часто не сводятся к набору аксиом и человек не использует классическую логику. В США появились первые коммерческие системы, основанные на знаниях, или экспертные системы (середина 1970-х годов). На смену поиска универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. Стал применяться новый подход к решению задач искусственного интеллекта – представление знаний. Это существенный прорыв в развитие практических приложений искусственного интеллекта. Созданы программы MYCIN (медицина), DENDRAL (химия). Финансирование осуществляется Пентагоном и др. В конце 70-х в Японии объявлено о начале проекта машин V поколения, основанных на знаниях. Проект рассчитывался на 10 лет и включал много квалифицированных специалистов. В результате создан громоздкий и дорогой ПРОЛОГо- подобный язык, не получивший широкого признания. Были достигнуты результаты в различных прикладных задачах, японская ассоциация ИИ насчитывала к середине 90-х годов 40 тыс. чел. Начиная с середины 1980-х годов растут капиталовложения в ИИ, создаются промышленные экспертные системы, ИИ становится одной из наиболее перспективных и престижных областей информатики (computer science). История искусственного интеллекта в России В 1954 г. в МГУ начал свою работу семинар «Автоматы и мышление» под руководством академика Ляпунова А. А. (1911-1973), одного из основателей российской кибернетики. В этом семинаре принимали участие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились два основных направления - нейрокибернетики и кибернетики «черного ящика». В 1954-1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. В Ленинграде (ЛОМИ - Ленинградское отделение математического института им. Стеклова) создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Кора» Михаила Моисеевича Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы ИИ внесли выдающиеся ученые Цетлин М.Л., Пушкин В.Н., Гаврилов М.А, чьи ученики и явились пионерами этой науки в России (например, знаменитая Гавриловская школа). В 1965-1980 гг. происходит рождение нового направления - ситуационного управления (соответствует представлению знаний, в западной терминологии). Основателем этой научной школы стал проф. Поспелов Д.А. Были разработаны специальные модели представления ситуаций - представления знаний [Поспелов, 1986]. В ИПМ АН СССР был создан язык символьной обработки данных РЕФАЛ [Тургин, 1968]. Поспелов Дмитрий Александрович Огромную роль в борьбе за признание ИИ в нашей стране сыграли академики А.И. Бергн и Г.С. Поспелов. Поспелов Гермоген Сергеевич 1914 - 1998 Только в 1974 году при Комитете по системному анализу при президиуме АН СССР был создан Научный совет по проблеме «Искусственный интеллект», его возглавил Г. С. Поспелов, его заместителями были избраны Д. А. Поспелов и Л. И. Микулич. В состав совета входили на разных этапах М. Г. Гаазе-Рапопорт, Ю. И. Журавлев, Л. Т. Кузин, А. С. Нариньяни, Д. Е. Охоцимский, А. И. Поло-винкин, О. К. Тихомиров, В. В. Чавчанидзе. По инициативе Совета было организовано пять комплексных научных проектов, которые были возглавлены ведущими специалистами в данной области. Проекты объединяли исследования в различных коллективах страны: «Диалог» (работы по пониманию естественного языка, руководители А. П. Ершов, А. С. Нариньяни), «Ситуация» (ситуационное управление, Д. А. Поспелов), «Банк» (банки данных, Л. Т. Кузин), «Конструктор» (поисковое конструирование, А. И. Половинкин), «Интеллект робота» (Д. Е. Охоцимский). В 1980-1990 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы (более 300). В 1988 г. создается АИИ - Ассоциация искусственного интеллекта. Ее членами являются более 300 исследователей. Президентом Ассоциации единогласно избирается Д. А. Поспелов, выдающийся ученый, чей вклад в развитие ИИ в России трудно переоценить. Крупнейшие центры - в Москве, Петербурге, Переславле-Залесском, Новосибирске. В научный совет Ассоциации входят ведущие исследователи в области ИИ - В. П. Гладун, В. И. Городецкий, Г. С. Осипов, Э. В. Попов, В. Л. Стефанюк, В. Ф. Хорошевский, В. К. Финн, Г. С. Цейтин, А. С. Эрлих и другие ученые. В рамках Ассоциации проводится большое количество исследований, организуются школы для молодых специалистов, семинары, симпозиумы, раз в два года собираются объединенные конференции, издается научный журнал. Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 80-х гг. на прикладных работах начинает сказываться постепенное отставание в технологии. На данный момент отставание в области разработки промышленных интеллектуальных систем составляет порядка 3-5 лет. Предмет исследования и основные направления исследований в области искусственного интеллекта Понятие «ИИ» Искусственный интеллект – это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка. Искусственный интеллект – это область информатики, которая занимается разработкой интеллектуальных компьютерных систем, т.е. систем, обладающих возможностями, которые мы традиционно связываем с человеческим разумом, - понимание языка, обучение, способность рассуждать, решать проблемы и т.д. (Барр и Файгенбаум, 1981 г.) Исследования в области искусственного интеллекта направлены на разработку программ, решающих такие задачи, с которыми сейчас лучше справляется человек, поскольку они требуют вовлечения таких функций головного мозга человека, как способность к обучению на основе восприятия, особой организации памяти и способности делать выводы на основе суждений. Основные направления исследований в области искусственного интеллекта Представление знаний и разработка систем, основанных на знаниях. Программное обеспечение систем искусственного интеллекта Разработка естественно-языковых интерфейсов и машинный перевод Интеллектуальные роботы Обучение и самообучение Распознавание образов Новые архитектуры компьютеров Игры и машинное творчество 1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems) Это основное направление в области разработки систем искусственного интеллекта. Оно связано с разработкой моделей представления знаний, созданием баз знаний, образующих ядро экспертных систем. В последнее время включает в себя модели и методы извлечения и структурирования знаний и сливается с инженерией знаний. 2. Программное обеспечение систем ИИ (software engineering for Al) В рамках этого направления разрабатываются специальные языки для решения интеллектуальных задач, в которых традиционно упор делается на преобладание логической и символьной обработки над вычислительными процедурами. Эти языки ориентированы на символьную обработку информации - LISP, PROLOG, SMALLTALK, РЕФАЛ и др. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта, например КЕЕ, ART, G2 [Хейес-Рот и др., 1987; Попов, Фоминых, Кисель, Шапот, 1996]. Достаточно популярно также создание так называемых пустых экспертных систем или «оболочек» - KAPPA, EXSYS, Ml, ЭКО и др., базы знаний которых можно наполнять конкретными знаниями, 3. Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing) Начиная с 50-х годов одной из популярных тем исследований в области ИИ является компьютерная лингвистика, и, в частности, машинный перевод (МП). Уже первая программа в области естественно-языковых (ЕЯ) интерфейсов - переводчик с английского на русский язык - продемонстрировала неэффективность первоначального подхода, основанного на пословном переводе. Однако еще долго разработчики пытались создать программы на основе морфологического анализа. Неплодотворность такого подхода связана с очевидным фактом: человек может перевести текст только на основе понимания его смысла и в контексте предшествующей информации, или контекста. Иначе появляются переводы в стиле «Моя дорогая Маша - my expensive Masha». В дальнейшем системы МП усложнялись и в настоящее время используется несколько более сложных моделей: применение так называемых «языков-посредников» или языков смысла, в результате происходит дополнительная трансляция «исходный язык оригинала - язык смысла - язык перевода»; ассоциативный поиск аналогичных фрагментов текста и их переводов в сдециальных текстовых репозиториях или базах данных; структурный подход, включающий последовательный анализ и синтез естественноязыковых сообщений. Традиционно такой подход предполагает наличие нескольких фаз анализа: 1. Морфологический анализ - анализ слов в тексте. 2. Синтаксический анализ - разбор состава предложений и грамматических связей между словами. 3. Семантический анализ - анализ смысла составных частей каждого предложения на основе некоторой предметно-ориентированной базы знаний. 4. Прагматический анализ - анализ смысла предложений в реальном контексте на основе собственной базы знаний. Синтез ЕЯ-сообщений включает аналогичные этапы, но несколько в другом порядке. 4. Интеллектуальные роботы (robotics) Идея создания роботов далеко не нова. Само слово «робот» появилось в 20-х годах, как производное от чешского «робота» - тяжелой грязной работы. Его автор - чешский писатель Карел Чапек, описавший роботов в своем рассказе «Р.У.Р». Роботы - это электротехнические устройства, предназначенные для автоматизации человеческого труда. Можно условно выделить несколько поколений в истории создания и развития робототехники: I поколение. Роботы с жесткой схемой управления. Практически все современные промышленные роботы принадлежат к первому поколению. Фактически это программируемые манипуляторы. II поколение. Адаптивные роботы с сенсорными устройствами. Есть образцы таких роботов, но в промышленности они пока используются мало. III поколение. Самоорганизующиеся или интеллектуальные роботы. Это - конечная цель развития робототехники. Основные нерешенные проблемы при создании интеллектуальных роботов - проблема машинного зрения и адекватного хранения и обработки трехмерной визуальной информации. В настоящее время в мире изготавливается более 60 000 роботов в год. Актуальность создания интеллектуальных мобильных роботов Автономные интеллектуальные мобильные роботы предназначены для автоматической работы в заранее неопределенных условиях внешней среды. Они могут применяться в различных областях человеческой деятельности и могут решать различные задачи. Например, доставлять грузы, перемещать различные предметы, производить разведку, производить какую-либо технологическую операцию на большом пространстве (например, уборку помещения) и т.п. Подобные системы готовы заменить человека при выполнении сложных технологических операциях, связанных с повышенным риском или с работой в экстремальных средах, например, в условиях повышенной радиации, давлении или безвоздушном пространстве, а также заменить человеческий труд на непопулярных профессиях. Робот-вертолет Mantis (2003 г.) Австралийские инженеры из организации CSIRO разработали роботвертолёт Mantis ("Богомол"), который способен к автономному полёту - впервые - без использования системы глобального позиционирования (GPS). Высота "Богомола" 0,5 метра, а длина 1,5 метра. При этом новый вертолёт в 4-5 раз легче, чем любой другой беспилотный летательный аппарат, и стоит значительно дешевле. Хотя роботом можно управлять дистанционно, в полёте машина может полагаться исключительно на свой компьютерный мозг и видеокамерыглаза. Специально для вертолёта разработана система инерционного восприятий (Inertial Sensing System) с микроэлектромеханическими датчиками, сделанными из лёгкого сплава магния. Роботы-солдаты Talon,SWORDS (2004 г.) Солдаты с дистанционным управлением появились на свет в результате совместных действий армии США и маленькой компании из Массачусетса под названием Foster-Miller. Эта фирма была в ноябре прошлого года куплена QinetiQ Group PLC, которая, в свою очередь, принадлежит министерству обороны Великобритании (MOD) и американскому холдингу Carlyle Group. Всё началось с роботов, именуемых "Когтями" (TALON). Они находятся на военной службе с 2000 года, побывали в Боснии, Афганистане и том же Ираке, работали своими механическими руками на развалинах ВТЦ после терактов 11 сентября. Их задачами были: обнаружение и обезвреживание взрывчатки вместе с наблюдением за неприятием. И военные качеством выполнения этих задач были довольны. Однако через некоторое время армейские чиновники и сотрудники Foster-Miller, по их же словам, получили известие от солдат. Дескать, нравятся нам "Когти", спору нет, но давайте дадим им хоть какое-нибудь оружие. Идя навстречу пожеланиям военнослужащих, инженеры из армейского арсенала в Нью-Джерси (Picatinny Arsenal) и Foster-Miller всего за шесть месяцев и $2 миллиона вооружили роботов. Так "Когти" превратились в "Мечи" (SWORDS - Special Weapons Observation Reconnaissance Detection Systems), специальные системы обнаружения, разведки и наблюдения с оружием. Именно "Мечи" и окажутся в Ираке по весне. В стандартной комплектации у него имеется лёгкий пулемёт M249 калибра 5,56 миллиметров (750 выстрелов в минуту) или "средний" пулемёт M240 калибра 7,62 (7001000 в минуту). Без перезарядки робот может произвести 300 и 350 выстрелов соответственно. Цена одной машины $200 000. Робот-солдат SWORD в действии Робот-таракан InsBot (2003 г.) Разработкой автоматизированного шпиона в тараканьем стане занимаются исследователи из трёх стран - Франции, Бельгии и Швейцарии. Уже сейчас InsBot способен проникать в группы тараканов, влиять на них и изменять их поведение. В течение десятилетия прикинувшийся тараканом лазутчик будет выводить мерзких насекомых из тёмных кухонных закоулков на чистую воду - туда, где они могут быть уничтожены. Разработчики робота-агента мечтают вовсе не о том, чтобы раз и навсегда извести тараканов. Их замыслы глобальнее. Используя роботов, они хотят управлять животными. Интеллектуальный робот-пылесос (2003 г.) 14.01.03 11:16 Компания iRobot выпустила интеллектуальный пылесос, который получил имя Румба (Roomba). На его создание ушло три года и несколько миллионов долларов. Основные задачи, которые были поставлены перед разработчиками - снизить цену робота и максимально уменьшить энергопотребление. Мощность Румбы - всего лишь 30 ватт против типичных 1000 ватт. Робот снабжен пятью щетками, двумя электромоторами для передвижения и еще тремя - для работы щетками. Мощный мотор, засасывающий любую пыль, в Румбе отсутствует. Его замещают щетки с противовращением, собирающие крупный сор, и маломощный вакуумный моторчик. В результате устройство работает от никелевых аккумуляторов. Колеса робота могут поворачиваться в любую сторону, поэтому он может выехать из самых затруднительных положений. Четыре инфракрасных датчика контролируют расстояние до пола и сразу же сообщают системе управления об уклоне или достижении края ступенек. Система контроля состоит из 8-битного 16 МГц микропроцессора, 128 байт памяти и специализированной операционной системы. Стоимость такого роботизированного пылесоса - $199. Интеллектуальный мобильный робот на основе игрушки (Россия, 2002 г.) Данный робот разрабатывается на кафедре "Проблемы управления" МИРЭА. В данной работе целью являлось создания мобильного интеллектуального робота, который бы для начала реализовывал функции движения к целевой точке в среде с препятствиями. Было решено, что робот должен обладать исключительно системой технического зрения. Целевую точку такому роботу можно будет задать тремя способами: лазерной указкой; оператором на карте; дистанционно через Интернет. П уль т упр ав лен ия м о нито р ПК Р о бо т R .A .D .™ LPT БС VGA A u d io O ut S o ft S o und M ic In D E -1 8 T V In LAN С еть П ита ние кам ер ы 5. Обучение и самообучение (machine learning) Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний на основе анализа и обобщения данных [Гаек, Гавранек, 1983; Гладуп, 1994; Финн, 1991]. Включает обучение по примерам (или индуктивное), а также традиционные подходы из теории распознавания образов. В последние годы к этому направлению тесно примыкают стремительно развивающиеся системы data mining - анализа данных и knowledge discovery - поиска закономерностей в базах данных. 6. Распознавание образов (pattern recognition) Традиционно - одно из направлений искусственного интеллекта, берущее начало у самых его истоков, но в настоящее время практически выделившееся в самостоятельную науку. Ее основной подход - описание классов объектов через определенные значения значимых признаков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Процедура распознавания использует чаще всего специальные математические процедуры и функции, разделяющие объекты на классы. Это направление близко к машинному обучению и тесно связано с нейрокибернетикой. 6. Распознавание образов (pattern recognition) Традиционно - одно из направлений искусственного интеллекта, берущее начало у самых его истоков, но в настоящее время практически выделившееся в самостоятельную науку. Ее основной подход - описание классов объектов через определенные значения значимых признаков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Процедура распознавания использует чаще всего специальные математические процедуры и функции, разделяющие объекты на классы. Это направление близко к машинному обучению и тесно связано с нейрокибернетикой. 7. Новые архитектуры компьютеров (new hardware platforms and architectures) Самые современные процессоры сегодня основаны на традиционной последовательной архитектуре фон Неймана, используемой еще в компьютерах первых поколений. Эта архитектура крайне неэффективна для символьной обработки. Поэтому усилия многих научных коллективов и фирм уже десятки лет нацелены на разработку аппаратных архитектур, предназначенных для обработки символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных, параллельным и векторным компьютерам [Амамия, Танака, 1993]. И хотя удачные промышленные решения существуют, высокая стоимость, недостаточное программное оснащение и аппаратная несовместимость с традиционными компьютерами существенно тормозят широкое использование новых архитектур. 6. Игры и машинное творчество Это, ставшее скорее историческим, направление связано с тем, что на заре исследований ИИ традиционно включал в себя игровые интеллектуальные задачи - шахматы, шашки, го. В основе первых программ лежит один из ранних подходов - лабиринтная модель мышления плюс эвристики. Сейчас это скорее коммерческое направление, так как в научном плане эти идеи считаются тупиковыми. Кроме того, это направление охватывает сочинение компьютером музыки [Зарипов, 1983], стихов, сказок [Справочник по ИИ, 1986] и даже афоризмов [Любич, 1998]. Основным методом подобного «творчества» является метод пермутаций (перестановок) плюс использование некоторых баз знаний и данных, содержащих результаты исследований по структурам текстов, рифм, сценариям и т. п. 6. Другие направления ИИ - междисциплинарная наука, которая, как мощная река по дороге к морю, вбирает в себя ручейки и речки смежных наук. Стоит лишь взглянуть на основные рубрикаторы конференций по ИИ, чтобы понять, насколько широко простирается область исследований по ИИ: генетические алгоритмы; когнитивное моделирование; интеллектуальные интерфейсы; распознавание и синтез речи; дедуктивные модели.


Top