Как определяется относительная погрешность косвенных измерений. Расчёт погрешности косвенных измерений

Пусть известны две независимо измеренных физических величины и с погрешностями и соответственно. Тогда справедливы следующие правила:

1. Абсолютная погрешность суммы (разности) есть сумма абсолютных погрешностей. То есть, если

Более разумная (учитывающая то, что величины и независимы и маловероятно, что их истинные значения одновременно окажутся на краях диапазонов) оценка получается по формуле:

На всех школьных олимпиадах допускается применение любой из этих двух формул. Аналогичные формулы справедливы для случая нескольких (более двух) слагаемых.

Пример:

Пусть величина , ,

.

2. Относительная погрешность произведения (частного) есть сумма относительных погрешностей.

То есть, если

Как и в предыдущем случае, более разумной будет формула

Аналогичные формулы справедливы для случая нескольких (более двух) множителей.

Таким образом, в результате сложения двух величин сначала вычисляется абсолютная погрешность величины, а после этого может быть вычислена относительная погрешность.

Пример:

Пусть величина , ,


3. Правило для возведения в степень. Если , то .

Пример:


4. Правило умножения на константу. Если .

Пример:

5. Более сложные функции величин разбиваются на более простые вычисления, погрешности которых можно рассчитать по формулам представленным выше.

Пример:

Пусть

6. Если расчётная формула сложна и не сводиться к описанным выше случаем, то, школьники знакомые с понятием частной производной могут найти погрешность косвенного измерения следующим образом: пусть , тогда

или более простой оценкой:

Пример:

Пусть

7. Школьники, не знакомые с производными, могут пользоваться методом границ, который состоит в следующем: пусть нам известно, что и для каждой величины диапазон в котором лежит её истинное значение. Рассчитаем минимальное и максимальное возможное значение величины на области задания величин :

За абсолютную погрешность величины возьмём полуразность максимального и минимального значения:

Пример:

Пусть

Правила округления

При обработке результатов измерений часто приходится производить округление. При этом нужно следить, чтобы ошибка, возникающая при округлении, была хотя бы на порядок меньше остальных погрешностей. Однако оставлять слишком много значащих цифр тоже неправильно, поскольку влечёт за собой потерю драгоценного времени. В большинстве случаев бывает достаточно погрешность округлить до двух значащих цифр, а результат до того же порядка, что и погрешность. При записи же конечного ответа принято оставлять в погрешности только одну значащую цифру, за исключением случая, когда эта цифра единица, тогда нужно оставить две значащих цифры в погрешности. Также часто порядок числа выносится за скобку, таким образом, чтобы первая значащая цифра числа осталась либо в порядке единиц, либо в порядке десятых.



Например, пусть были проведены измерения модуля Юнга стали и Алюминия и были получены следующие значения (до округления):

, , , .

Правильно записанный конечный ответ тогда будет иметь вид:

Построение графиков

Во многих задачах, предлагаемых на физических олимпиадах школьников, требуется снять зависимость одной физической величины от другой, а затем проанализировать эту зависимость (сравнить экспериментальную зависимость с теоретической, определить неизвестные параметры теоретической зависимости). График является наиболее удобным и наглядным способом представления данных и их дальнейшего анализа. Поэтому в критериях оценивания большинства экспериментальных задач присутствуют баллы за график, даже если построение графика не требуется явно в условии. Таким образом, если при решении задачи Вы сомневаетесь нужно ли в данной задаче построение графика или нет - сделайте выбор в пользу графика.

Правила построения графика

1. График строится на миллиметровой бумаге. Если на экспериментальном туре олимпиады миллиметровая бумага не была предоставлена сразу, нужно попросить её у организаторов.

2. График нужно подписать в верхней части, чтобы всегда можно было установить, какой участник строил этот график. В работе следует указать, что был построен соответствующий график, на случай если график будет потерян во время проверки.



3. Ориентация миллиметровой бумаги может быть как альбомная, так и книжная.

4. На графике обязательно должны присутствовать координатные оси. Вертикальная ось проводится в левой части графика, а горизонтальная ось в нижней части.

5. Вертикальная ось должна соответствовать значениям функции, а горизонтальная – значениям аргумента.

6. Оси на графике рисуются с отступом 1-2см от края миллиметровой бумаги.

7. Каждая ось должна быть подписана, то есть должна быть указана физическая величина, отложенная вдоль этой оси, и (через запятую) единица её измерения. Записи вида « », « » и « » эквивалентны, но первые два варианта предпочтительнее. Горизонтальная ось подписывается слева у верхнего конца, а вертикальная снизу у правого конца.

8. Оси не обязательно должны пересекаться в точке (0,0).

9. Масштаб графика и положение начала отсчёта на координатных осях выбираются так, чтобы наносимые точки располагались по возможности на всей площади листа. При этом нули координатных осей могут вообще не попадать на график.

10. Линии, проведённые на миллиметровой бумаге через сантиметр, должны попадать на круглые значения величин. С графиком удобно работать, если 1 см на миллиметровой бумаги соответствуют 1, 2, 4, 5 *10 n единиц измерения по данной оси. Часть делений на оси нужно подписать. Подписанные деления должны находится на равном расстоянии друг от друга. Подписанных делений на оси должно быть не менее 4х и не более 10ти.

11. Точки на график нужно наносить так, чтобы они были чётко и ясно видны. Для того чтобы показать, что величина наносимая на график имеет погрешность, из каждой точки проводятся отрезки вверх и вниз, вправо и влево. Длина горизонтальных отрезков соответствует погрешности величины, отложенной по горизонтальной оси, длина вертикальных отрезков - погрешности величины, отложенной по вертикальной. Таким образом, обозначаются области определения экспериментальной точки, называемые крестами ошибок. Кресты ошибок обязательны к нанесению на графике, за исключением случаев: в условии задачи дано непосредственное указание не оценивать погрешности, погрешность составляет меньше 1 мм в масштабе соответствующей оси. В последнем случае необходимо указать, что погрешность значений слишком мала для нанесения по этой оси. В таких случаях считается, что размер точки соответствует ошибке измерения.

12. Стремитесь к тому, чтобы ваш график был удобен, понятен и аккуратен. Стройте его карандашом, чтобы можно было исправить ошибки. Не подписывайте рядом с точкой соответствующее ей значение - это загромождает график. Если на одном графике показано сразу несколько зависимостей, используйте разные символы или цвета для точек. Для определения, какой тип экспериментальных точек, какой зависимости соответствует, используйте легенду графика. На графике допускаются зачёркивания (если подвёл ластик или под рукой не оказалось хорошего карандаша), но делать их нужно аккуратно. Не стоит использовать штрих-корректор - это выглядит некрасиво.

Примечание: все вышеперечисленные правила происходят исключительно из соображений удобства работы с графиком. Однако, при проверке работ на олимпиадах жюри пользуются этими правилами как формальными критериями: плохо выбран масштаб - минус полбалла. Поэтому на олимпиаде следует неукоснительно придерживаться этих правил.

Пример:

Справа приведен график, построенный не по критериям, а слева, построенный по указанным выше правилам.

При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= DХ/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

Абсолютную погрешность определяется по формуле DХ=Х пр *e,

где e выражается десятичной дробью, а не в процентах.

Окончательный результат записывается так же, как и в случае прямых измерений

Вид функции Формула
Х=А+В+С
Х=А-В
Х=А*В*С
Х=А n
Х=А/В
Х=

(+ http://fiz.1september.ru/2001/16/no16_01.htm полезно) Как правильно проводить измерения http://www.fizika.ru/fakultat/index.php?theme=01&id=1220

Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

μ=0,33. Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

Δ о =0,05Н. Абсолютная погрешность измерения веса и силы трения 0,1 Н.

Относительная погрешность измерения (в таблице 5-я строчка)

Следовательно абсолютная погрешность косвенного измерения μ составляет 0,22*0,33=0,074

Ответ:

Измерить физическую величину - значит сравнить ее с другой однородной величиной, принятой за единицу измерения. Измерение может быть произведено с помощью:

1. мер, представляющих собой образцы единицы измерения (метр, гиря, литровый сосуд и т.п.),

2. измерительных приборов (амперметр, манометр и т.п.),

3. измерительных установок, под которыми понимают совокупность мер, измерительных приборов и вспомогательных элементов.

Измерения бывают прямые и косвенные. В прямых измерениях физическая величина измеряется непосредственно. Прямыми измерениями являются, например, измерение длины линейкой, времени - секундомером, силы тока - амперметром.

В косвенных измерениях непосредственно измеряют не ту величину, значение которой нужно узнать, а другие величины, с которыми искомая величина связана определенной математической зависимостью. Например, плотность тела определяют по измерению его массы и объема, а сопротивление - по измерению силы тока и напряжения.



В силу несовершенства мер и измерительных приборов, а также наших органов чувств, измерения не могут быть выполнены точно, т.е. всякое измерение дает лишь приближенный результат. Кроме того, часто причиной отклонения результатов измерений является природа самой измеряемой величины. Например, температура, измеряемая термометром или термопарой в определенной точке печи, колеблется вследствие конвекции и теплопроводности в определенных пределах. Мерой оценки точности результата измерения служит погрешность измерения (ошибка измерения) .

Для оценки точности указывают либо абсолютную погрешность, либо относительную погрешность измерения. Абсолютная погрешность выражается в единицах измеряемой величины. Например, отрезок пути, пройденный телом, , измерен с абсолютной погрешностью . Относительная погрешность измерения - это отношение абсолютной погрешности к значению измеряемой величины. В приведенном примере относительная погрешность равна . Чем меньше погрешность измерения, тем выше его точность.

По источникам своего происхождения погрешности измерения подразделяют на систематические, случайные и грубые (промахи).

1. Систематические погрешности - погрешности измерения, величина которых остается постоянной при повторных измерениях, проводимых одним и тем же методом, с помощью одних и тех же измерительных приборов. Причинами систематических погрешностей являются:



· неисправности, неточности измерительных приборов

· неправомерность, неточность использованной методики измерения

Примером систематических погрешностей может быть измерение температуры термометром со смещенной нулевой точкой, измерение тока неправильно отградуированным амперметром, взвешивание тела на весах при помощи гирь без учета выталкивающей силы Архимеда.

Для устранения или уменьшения систематических погрешностей надо тщательно проверить измерительные приборы, произвести измерение одних и тех же величин разными методами, вводить поправки, когда ошибки заведомо известны (поправки на выталкивающую силу, поправки на показания термометра).

2. Грубые ошибки (промахи) - существенное превышение величины погрешности, ожидаемой при данных условиях измерения. Промахи появляются в результате неправильной записи показаний прибора, неправильного отсчета по прибору, из-за ошибки в расчетах при косвенных измерениях. Источник промахов - невнимательность экспериментатора. Путь устранения этих погрешностей - аккуратность экспериментатора, исключение переписывания протоколов измерения.

3. Случайные погрешности - погрешности, величина которых меняется случайным образом при повторных измерениях одной и той же величины одним и тем же методом при помощи тех же приборов. Источником случайных погрешностей является неконтролируемая невоспроизводимость условий измерения. Например, во время измерения неконтролируемым образом может меняться температура, влажность, атмосферное давление, напряжение в электрической сети, состояния органов чувств экспериментатора. Исключить случайные погрешности нельзя. При многократных измерениях случайные ошибки подчиняются статистическим законам, и их влияние можно учесть.

Погрешности измерений физических величин

1.Введение(измерения и погрешности измерений)

2.Случайные и систематические погрешности

3.Абсолютные и относительные погрешности

4.Погрешности средств измерений

5.Класс точности электроизмерительных приборов

6.Погрешность отсчета

7.Полная абсолютная погрешность прямых измерений

8.Запись окончательного результата прямого измерения

9.Погрешности косвенных измерений

10.Пример

1. Введение(измерения и погрешности измерений)

Физика как наука родилась более 300 лет назад, когда Галилей по сути создал научный изучения физических явлений: физические законы устанавливаются и проверяются экспериментально путем накопления и сопоставления опытных данных, представляемых набором чисел, формулируются законы языком математики, т.е. с помощью формул, связывающих функциональной зависимостью числовые значения физических величин. Поэтому физика- наука экспериментальная, физика- наука количественная.

Познакомимся с некоторыми характерными особенностями любых измерений.

Измерение- это нахождение числового значения физической величины опытным путем с помощью средств измерений (линейки, вольтметра, часы и т.д.).

Измерения могут быть прямыми и косвенными.

Прямое измерение- это нахождение числового значения физической величины непосредственно средствами измерений. Например, длину - линейкой, атмосферное давление- барометром.

Косвенное измерение- это нахождение числового значения физической величины по формуле, связывающей искомую величину с другими величинами, определяемыми прямыми измерениями. Например сопротивление проводника определяют по формуле R=U/I, где U и I измеряются электроизмерительными приборами.

Рассмотрим пример измерения.



Измерим длину бруска линейкой (цена деления 1 мм). Можно лишь утверждать, что длина бруска составляет величину между 22 и 23 мм. Ширина интервала “неизвестности составляет 1мм, те есть равна цене деления. Замена линейки более чувствительным прибором, например штангенциркулем снизит этот интервал, что приведет к повышению точности измерения. В нашем примере точность измерения не превышает 1мм.

Поэтому измерения никогда не могут быть выполнены абсолютно точно. Результат любого измерения приближенный. Неопределенность в измерении характеризуется погрешностью - отклонением измеренного значения физической величины от ее истинного значения.

Перечислим некоторые из причин, приводящих к появлению погрешностей.

1. Ограниченная точность изготовления средств измерения.

2. Влияние на измерение внешних условий (изменение температуры, колебание напряжения...).

3. Действия экспериментатора (запаздывание с включением секундомера, различное положение глаза...).

4. Приближенный характер законов, используемых для нахождения измеряемых величин.

Перечисленные причины появления погрешностей неустранимы, хотя и могут быть сведены к минимуму. Для установления достоверности выводов, полученных в результате научных исследований существуют методы оценки данных погрешностей.

2. Случайные и систематические погрешности

Погрешности, возникаемые при измерениях делятся на систематические и случайные.

Систематические погрешности- это погрешности, соответствующие отклонению измеренного значения от истинного значения физической величины всегда в одну сторону (повышения или занижения). При повторных измерениях погрешность остается прежней.

Причины возникновения систематических погрешностей:

1) несоответствие средств измерения эталону;

2) неправильная установка измерительных приборов (наклон, неуравновешенность);

3) несовпадение начальных показателей приборов с нулем и игнорирование поправок, которые в связи с этим возникают;

4) несоответствие измеряемого объекта с предположением о его свойствах (наличие пустот и т.д).

Случайные погрешности- это погрешности, которые непредсказуемым образом меняют свое численное значение. Такие погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения (неровности на поверхности объекта, дуновение ветра, скачки напряжения и т.д.). Влияние случайных погрешностей может быть уменьшено при многократном повторении опыта.

3. Абсолютные и относительные погрешности

Для количественной оценки качества измерений вводят понятия абсолютной и относительной погрешностей измерений.

Как уже говорилось, любое измерение дает лишь приближенное значение физической величины, однако можно указать интервал, который содержит ее истинное значение:

А пр - D А < А ист < А пр + D А

Величина D А называется абсолютной погрешностью измерения величины А. Абсолютная погрешность выражается в единицах измеряемой величины. Абсолютная погрешность равна модулю максимально возможного отклонения значения физической величины от измеренного значения. А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений.

Но для оценки качества измерения необходимо определить относительную погрешность e . e = D А/А пр или e= (D А/А пр)*100%.

Если при измерении получена относительная погрешность более 10%, то говорят, что произведена лишь оценка измеряемой величины. В лабораториях физического практикума рекомендуется проводить измерения с относительной погрешностью до 10%. В научных лабораториях некоторые точные измерения (например определение длины световой волны), выполняются с точностью миллионных долей процента.

4. Погрешности средств измерений

Эти погрешности называют еще инструментальными или приборными. Они обусловлены конструкцией измерительного прибора, точностью его изготовления и градуировки. Обычно довольствуются о допустимых инструментальных погрешностях, сообщаемых заводом изготовителем в паспорте к данному прибору. Эти допустимые погрешности регламентируются ГОСТами. Это относится и к эталонам. Обычно абсолютную инструментальную погрешность обозначают D иА.

Если сведений о допустимой погрешности не имеется (например у линейки), то в качестве этой погрешности можно принять половину цены деления.

При взвешивании абсолютная инструментальная погрешность складывается из инструментальных погрешностей весов и гирь. В таблице приведены допустимые погрешности наиболее часто

встречающихся в школьном эксперименте средств измерения.

Средства измерения

Предел измерения

Цена деления

Допустимаяпогрешность

линейка ученическая

линейка демонстрационная

лента измерительная

мензурка

гири 10,20, 50 мг

гири 100,200 мг

гири 500 мг

штангенциркуль

микрометр

динамометр

весы учебные

Секундомер

1с за 30 мин

барометр-анероид

720-780 мм рт.ст.

1 мм рт.ст

3 мм рт.ст

термометр лабораторный

0-100 градусов С

амперметр школьный

вольтметр школьный

5. Класс точности электроизмерительных приборов

Стрелочные электроизмерительные приборы по допустимым значениям погрешностям делятся на классы точности, которые обозначены на шкалах приборов числами 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности g пр прибора показывает, сколько процентов составляет абсолютная погрешность от всей шкалы прибора.

g пр = (D и А/А макс)*100% .

Например абсолютная инструментальная погрешность прибора класса 2,5 составляет 2,5% от его шкалы.

Если известен класс точности прибора и его шкала, то можно определить абсолютную инструментальную погрешность измерения

D иА=( g пр * А макс)/100.

Для повышения точности измерения стрелочным электроизмерительным прибором надо выбирать прибор с такой шкалой, чтобы в процессе измерения располагались во второй половине шкалы прибора.

6. Погрешность отсчета

Погрешность отсчета получается от недостаточно точного отсчитывания показаний средств измерений.

В большинстве случаев абсолютную погрешность отсчета принимают равной половине цены деления. Исключения составляют измерения стрелочными часами (стрелки передвигаются рывками).

Абсолютную погрешность отсчета принято обозначать D оА

7. Полная абсолютная погрешность прямых измерений

При выполнении прямых измерений физической величины А нужно оценивать следующие погрешности: D иА, D оА и D сА (случайную). Конечно, иные источники ошибок, связанные с неправильной установкой приборов, несовмещение начального положения стрелки прибора с 0 и пр. должны быть исключены.

Полная абсолютная погрешность прямого измерения должна включать в себя все три вида погрешностей.

Если случайная погрешность мала по сравнению с наименьшим значением, которое может быть измерено данным средством измерения (по сравнению с ценой деления), то ее можно пренебречь и тогда для определения значения физической величины достаточно одного измерения. В противном случае теория вероятностей рекомендует находить результат измерения как среднее арифметическое значение результатов всей серии многократных измерений, погрешность результата вычислять методом математической статистики. Знание этих методов выходит за пределы школьной программы.

8. Запись окончательного результата прямого измерения

Окончательный результат измерения физической величины А следует записывать в такой форме;

А=А пр + D А, e= (D А/А пр)*100%.

А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений. D А- полная абсолютная погрешность прямого измерения.

Абсолютную погрешность обычно выражают одной значащей цифрой.

Пример: L=(7,9 + 0,1) мм, e=13%.

9. Погрешности косвенных измерений

При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= D Х/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

Абсолютную погрешность определяется по формуле D Х=Х пр *e,

где e выражается десятичной дробью, а не в процентах.

Окончательный результат записывается так же, как и в случае прямых измерений.

Вид функции

Формула

Х=А+В+С

Х=А-В


Х=А*В*С



Х=А n

Х=А/В

Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

μ=0,33.Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

Δ о =0,05Н.Абсолютная погрешность измерения веса и силы трения 0,1 Н.

Относительная погрешность измерения (в таблице 5-я строчка)

, следовательно абсолютная погрешность косвенного измерения μ составляет0,22*0,33=0,074

Задача ставится так: пусть искомая величина z определяется через другие величины a, b, c , ..., полученные при прямых измерениях

z = f (a, b, c,...) (1.11)

Необходимо найти среднее значение функции и погрешность ее измерений, т.е. найти доверительный интервал

при надежности a и относительную погрешность .

Что касается , то оно находится путем подстановки в правую часть (11) вместо a, b, c ,... их средних значений

Абсолютная погрешность косвенных измерений является функцией абсолютных погрешностей прямых измерений и вычисляется по формуле

(1.14)

Здесь частные производные функции f по переменным a, b,

Если величины a, b, c, ... в функцию Z = f (a, b, c,...) входят в виде сомножителей в той или иной степени, т. е. если

, (1.15)

то сначала удобно вычислить относительную погрешность

, (1.16)

а затем абсолютную

Формулы для Dz и e z приводятся в справочной литературе.

Примечания.

1. При косвенных измерениях в расчетные формулы могут входить известные физические константы (ускорение свободного падения g , скорость света в вакууме с и т. д.), числа типа дробные множители ... . Эти величины при вычислениях округляются. При этом, естественно, в расчет вносится погрешность ‒ погрешность округления при вычислениях, которая должна учитываться.

Принято считать, что погрешность округления приближенного числа равна половине единицы того разряда, до которого это число было округлено. Например,p = 3,14159... . Если взять p= 3,1, то Dp = 0,05, если p = 3,14, то Dp = 0,005 ... и т.д. Вопрос о том, до какого разряда округлять приближенное число, решается так: относительная ошибка, вносимая округлением, должна быть того же порядка или на порядок меньше, что и максимальная из относительных ошибок других видов. Таким же образом оценивается абсолютная ошибка табличных данных. Например, в таблице указано r = 13,6×10 3 кг/ м 3 , следовательно,Dr = 0,05×10 3 кг/м 3 .

Ошибка значений универсальных постоянных часто указывается вместе с их принятыми за средние значения: (с = м/c, где Dс = 0,3×10 3 м/c.

2. Иногда при косвенных измерениях условия опыта при повторных наблюдениях не совпадают. В этом случае значение функции z вычисляется для каждого отдельного измерения, а доверительный интервал вычисляется через значения z так же, как при прямых измерениях (все погрешности здесь входят в одну случайную погрешность измерения z ). Величины, которые не измеряются, а задаются (если они есть) должны быть указаны при этом с достаточно большой точностью.

Порядок обработки результатов измерений

Прямые измерения

1. Вычислить среднее значение для n измерений

2. Найти погрешности отдельных измерений .

3. Вычислить квадраты погрешностей отдельных измерений и их сумму: .

4. Задать надежностьa (для наших целей принимаем a = 0,95) и по таблице определить коэффициенты Стьюдента t a,n и t a, ¥ .

5. Произвести оценку систематических погрешностей: приборной Dх пр и ошибки округления при измеренияхDх окр = D/2 (D ‒ цена деления прибора) и найти полную погрешность результата измерений (полуширину доверительного интервала):

.

6. Оценить относительную погрешность

.

7. Окончательный результат записать в виде

ε = … % при a = ...

Косвенные измерения

1. Для каждой величины, измеренной прямым способом, входящей в формулу для определения искомой величины , провести обработку, как указано выше. Если среди величин a, b, c , ... есть табличные константы или числа типа p, е ,..., то при вычислениях округлять их следует так (если это возможно), чтобы вносимая при этом относительная ошибка была на порядок меньше наибольшей относительной ошибки величин, измеренных прямым способом.

Определить среднее значение искомой величины

z = f (,,,...).

3. Оценить полуширину доверительного интервала для результата косвенных измерений

,

где производные ... вычисляются при

4. Определить относительную погрешность результата

5. Если зависимость z от a, b, c ,... имеет вид , где k, l, m ‒ любые действительные числа, то сначала следует найти относительную ошибку

а затем абсолютную .

6. Окончательный результат записать в виде

z = ± Dz , ε = …% при a= … .

Примечание:

При обработке результатов прямых измерений нужно следовать следующему правилу: численные значения всех рассчитываемых величин должны содержать на один разряд больше, чем исходные (определенные экспериментально) величины.

При косвенных измерениях вычисления производить по правилам приближенных вычислений :

Правило 1. При сложении и вычитании приближенных чисел необходимо:

а) выделить слагаемое, у которого сомнительная цифра имеет наиболее высокий разряд;

б) все остальные слагаемые округлить до следующего разряда (сохраняется одна запасная цифра);

в) произвести сложение (вычитание);

г) в результате отбросить последнюю цифру путем округления (разряд сомнительной цифры результата при этом совпадает со старшим из разрядов сомнительных цифр слагаемых).

Пример: 5,4382·10 5 – 2,918·10 3 + 35,8 + 0,064.

В этих числах последние значащие цифры сомнительные (неверные уже отброшены). Запишем их в виде 543820 – 2918 + 35,8 + 0,064.

Видно, что у первого слагаемого сомнительная цифра 2 имеет наиболее высокий разряд (десятки). Округлив все другие числа до следующего разряда и сложив, получим

543820 – 2918 + 36 + 0 = 540940 = 5,4094·10 5 .

Правило 2. При умножении (делении) приближенных чисел необходимо:

а) выделить число (числа) с наименьшим количеством значащих цифр (ЗНАЧАЩИЕ – цифры отличные от ноля и ноли стоящие между ними );

б) округлить остальные числа так, чтобы в них было на одну значащую цифру больше (сохраняется одна запасная цифра), чем выделенном по п. а;

в) перемножить (разделить) полученные числа;

г) в результате оставить столько значащих цифр, сколько их было в числе (числах) с наименьшим количеством значащих цифр.

Пример: .

Правило 3. При возведении в степень, при извлечении корня в результате сохраняется столько значащих цифр, сколько их в исходном числе.

Пример: .

Правило 4. При нахождении логарифма числа мантисса логарифма должна иметь столько значащих цифр, сколько их в исходном числе:

Пример: .

В окончательной записиабсолютной погрешности следует оставлять только одну значащую цифру . (Если этой цифрой окажется 1, то после нее сохраняют еще одну цифру).

Среднее значение округляется до того же разряда, что и абсолютная погрешность.

Например: V = (375,21 0,03) см 3 = (3,7521 0,0003) см 3 .

I = (5,530 0,013) А, A = Дж.

В большинстве случаев конечной целью лабораторной работы является вычисление искомой величины с помощью некоторой формулы, в которую входят величины, измеряемые прямым путем. Такие измерения называются косвенными. В качестве примера приведем формулу плотности твердого тела цилиндрической формы

где r – плотность тела, m – масса тела, d – диаметр цилиндра, h – его высота.

Зависимость (П.5) в общем виде можно представить следующим образом:

где Y – косвенно измеряемая величина, в формуле (П.5) это плотность r; X 1 , X 2 ,... , X n – прямо измеряемые величины, в формуле (П.5) это m , d , и h .

Результат косвенного измерения не может быть точным, поскольку результаты прямых измерений величин X 1 , X 2 , ... , X n всегда содержат в себе погрешность. Поэтому при косвенных измерениях, как и при прямых, необходимо оценить доверительный интервал (абсолютную погрешность)полученного значения DY и относительную погрешность e.

При расчете погрешностей в случае косвенных измерений удобно придерживаться такой последовательности действий:

1) получить средние значения каждой прямо измеряемой величины áX 1 ñ, áX 2 ñ, …, áX n ñ;

2) получить среднее значение косвенно измеряемой величины áY ñ, подставив вформулу (П.6) средние значения прямо измеряемых величин;

3) провести оценки абсолютных погрешностей прямо измеряемых величин DX 1 , DX 2 , ..., DX n , воспользовавшись формулами (П.2) и (П.3);

4) основываясь на явном виде функции (П.6), получить формулу для расчета абсолютной погрешности косвенно измеряемой величины DY и рассчитать ее;

6) записать результат измерения с учетом погрешности.

Ниже без вывода приводится формула, позволяющая получить формулы для расчета абсолютной погрешности, если известен явный вид функции (П.6):

где ¶Y¤¶X 1 и т. д. – частные производные от Y по всем прямо измеряемым величинам X 1 , X 2 , …, X n (когда берется частная производная, например по X 1 , то все остальные величины X i в формуле считаются постоянными), DX i – абсолютные погрешности прямо измеряемых величин, вычисленные согласно (П.3).

Рассчитав DY, находят относительную погрешность .

Однако если функция (П.6) является одночленом, то намного легче сначала рассчитать относительную погрешность, а затем уже абсолютную.

Действительно, разделив обе части равенства (П.7) на Y , получим

Но так как , то можно записать

Теперь, зная относительную погрешность, определяют абсолютную .

В качестве примера получим формулу для расчета погрешности плотности вещества, определяемой по формуле (П.5). Поскольку (П.5) является одночленом, то, как сказано выше, проще сначала рассчитать относительную погрешность измерения по (П.8). В (П.8) под корнем имеем сумму квадратов частных производных от логарифма измеряемой величины, поэтому сначала найдем натуральный логарифм r:


ln r = ln 4 + ln m – ln p –2 ln d – ln h ,

а потом уже воспользуемся формулой (П.8) и получим, что

Как видно, в (П.9) используются средние значения прямо измеряемых величин и их абсолютные погрешности, рассчитанные методом прямых измерений по (П.3). Погрешность, вносимую числом p, не учитывают, поскольку ее значение всегда можно взять с точностью, превышающей точность измерения всех других величин. Рассчитав e, находим .

Если косвенные измерения являются независимыми (условия каждого последующего эксперимента отличаются от условий предыдущего), то значения величины Y вычисляются для каждого отдельного эксперимента. Произведя n опытов, получают n значений Y i . Далее, принимая каждое из значений Y i (где i – номер опыта) за результат прямого измерения, вычисляют áY ñ и DY по формулам (П.1) и (П.2) соответственно.

Окончательный результат как прямых, так и косвенных измерений должен выглядеть так:

где m – показатель степени, u – единицы измерения величины Y .


Top