Продольная волна возникает при деформации мти. Поперечные и продольные волны

Продольные волны

Определение 1

Волна, в которой колебания происходят в направлении ее распространения. Примером продольной волны может служить звуковая волна.

Рисунок 1. Продольная волна

Механические продольные волны также называют компрессионными волнами или волнами сжатия, так как они производят сжатие при движении через среду. Поперечные механические волны также называют "Т-волны" или "волны сдвига".

Продольные волны включают в себя акустические волны (скорость частиц, распространяющихся в упругой среде) и сейсмические Р-волны (созданные в результате землетрясений и взрывов). В продольных волнах, смещение среды параллельно направлению распространения волны.

Звуковые волны

В случае продольных гармонических звуковых волн , частота и длина волны может быть описана формулой:

$y_0-$ амплитуда колебаний;\textit{}

$\omega -$ угловая частота волны;

$c-$ скорость волны.

Обычная частота $\left({\rm f}\right)$волны задается

Скорость звука распространения зависит от типа, температуры и состава среды, через которую он распространяется.

В упругой среде, гармоническая продольная волна проходит в положительном направлении вдоль оси.

Поперечные волны

Определение 2

Поперечная волна - волна, в которой направление молекул колебаний среды перпендикулярно к направлению распространения. Примером поперечных волн служит электромагнитная волна.

Рисунок 2. Продольная и поперечная волны

Рябь в пруду и волны на струне легко представить в виде поперечных волн.

Рисунок 3. Световые волны являются примером поперечной волны

Поперечные волны являются волнами, которые колеблются перпендикулярно к направлению распространения. Есть два независимых направления, в которых могут возникать волновые движения.

Определение 3

Двумерные поперечные волны демонстрируют явление, называемое поляризацией.

Электромагнитные волны ведут себя таким же образом, хотя это немного сложнее увидеть. Электромагнитные волны также являются двухмерными поперечными волнами.

Пример 1

Докажите, что уравнение плоской незатухающей волны ${\rm y=Acos}\left(\omega t-\frac{2\pi }{\lambda }\right)x+{\varphi }_0$ для волны, которая представлена на рисунке, можно записать в виде ${\rm y=Asin}\left(\frac{2\pi }{\lambda }\right)x$. Убедитесь в этом, подставив значения координаты$\ \ x$, которые раны $\frac{\lambda}{4}$; $\frac{\lambda}{2}$; $\frac{0,75}{\lambda}$.

Рисунок 4.

Уравнение $y\left(x\right)$ для плоской незатухающей волны не зависит от $t$, значит, момент времени $t$ можно выбрать произвольным. Выберем момент времени $t$ таким, что

\[\omega t=\frac{3}{2}\pi -{\varphi }_0\] \

Подставим это значение в уравнение:

\ \[=Acos\left(2\pi -\frac{\pi }{2}-\left(\frac{2\pi }{\lambda }\right)x\right)=Acos\left(2\pi -\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)\right)=\] \[=Acos\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)=Asin\left(\frac{2\pi }{\lambda }\right)x\] \ \ \[{\mathbf x}{\mathbf =}\frac{{\mathbf 3}}{{\mathbf 4}}{\mathbf \lambda }{\mathbf =}{\mathbf 18},{\mathbf 75}{\mathbf \ см,\ \ \ }{\mathbf y}{\mathbf =\ }{\mathbf 0},{\mathbf 2}{\cdot}{\mathbf sin}\frac{{\mathbf 3}}{{\mathbf 2}}{\mathbf \pi }{\mathbf =-}{\mathbf 0},{\mathbf 2}\]

Ответ: $Asin\left(\frac{2\pi }{\lambda }\right)x$

Пусть колеблющееся тело находится в среде, все частицы которой связаны между собой. Соприкасающиеся с ним частицы среды придут в колебательное движение, в результате чего в прилегающих к этому телу участках среды возникают периодические деформации (например, сжатие и растяжение). При деформациях в среде появляются упругие силы, которые стремятся вернуть частицы среды в первоначальное состояние равновесия.

Таким образом, периодические деформации, которые появились в каком-нибудь месте упругой среды, будут распространяться с некоторой скоростью, зависящей от свойств среды. При этом частицы среды не вовлекаются волной в поступательное движение, а совершают колебательные движения около своих положений равновесия, от одних участков среды к другим передается только упругая деформация.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной . Иногда эту волну называют упругой, потому что она обусловлена упругими свойствами среды.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны. Интерактивная демонстрация поперечной и продольной волны









Продольная волна это волна, в которой частицы среды колеблются вдоль направления распространения волны.



Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.


Таким образом, про дольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины .
Демонстрация распространения продольной волны


Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.


Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами. На рисунке изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия. Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания ( t 2 = T 4 ) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А. Через половину периода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А, волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки. Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и гребня.

Демонстрация распространения поперечной волны

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают только при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при сжатии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние деформации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.


Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является деформация сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой траектории. Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны . Они возникают в результате действия силы тяжести и силы поверхностного натяжения.

Рис.1. Продольные (а) и поперечные (б) механические волны

Вопрос 30

Длина волны.

Каждая волна распространяется с какой-то скоростью. Подскоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется . При переходе волны из одной среды в другую ее скорость изменяется.

Помимо скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней :

v - скорость волны; T - период колебаний в волне; λ (греческая буква «ламбда») - длина волны.

Выбрав направление распространения волны за направление оси x и обозначив через y координату колеблющихся в волне частиц, можно построить график волны . График синусоидальной волны (при фиксированном времени t) изображен на рисунке 45. Расстояние между соседними гребнями (или впадинами) на этом графике совпадает с длиной волны λ.


Формула (22.1) выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте, т. е. T = 1/ν, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней .

Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны .

Вопрос 30.1

Уравнение волн

Для получения уравнения волны, то есть аналитического выражения функции двух переменных S = f (t, x) , представим что, в некоторой точке пространства возникают гармонические колебания с круговой частотой w и начальной фазой, для упрощения равной нулю (см. рис.8). Смещение в точке М : S м = A sin w t , где А - амплитуда. Поскольку частицы среды, заполняющие пространство, связаны между собой, то колебания от точки М распространяются вдоль оси х со скоростью v . Через некоторое время Dt они достигают точки N . Если в среде отсутсвует затухание, то смещение в этой точке имеет вид: S N = A sin w (t - Dt) , т.е. колебания запаздывают на время Dt относительно точки M . Поскольку , то заменив произвольный отрезок MN координатой х , получим уравнение волны в виде.

Различают продольные и поперечные волны. Волна называется поперечной , если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны (рис. 15.3). Поперечная волна распространяется, например, вдоль натянутого горизонтального резинового шнура, один из концов которого закреплен, а другой приведен в вертикальное колебательное движение.

Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами (рис. 15.4, а). На рисунке 15.4 изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия (рис. 15.4, а). Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания \(\Bigr(t_2 = \frac{T}{4} \Bigl)\) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А (рис. 15.4, б). Через полпериода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А (рис. 15.4, в), волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки (рис. 15.4, д). Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и горба.

Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны (рис. 15.5).

Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке 15.6 точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.

Таким образом, продольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины.

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают толь-ко при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при стажии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки 15.4 и 15.6, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние дефомации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.

Рассмотрим, например, продольную волну в упругой пружине. В фиксированный момент времени кинетическая энергия распределена по пружине неравномерно, так как одни витки пружины в этот момент покоятся, а другие, напротив, движутся с максимальной скоростью. То же самое справедливо и для потенциальной энергии, так как в этот момент какие-то элементы пружины не деформированы, другие же деформированы максимально. Поэтому при рассмотрении энергии волны вводят такую характеристику, как плотность \(\omega\) кинетической и потенциальной энергий (\(\omega=\frac{W}{V} \)- энергия, приходящаяся на единицу объема). Плотность энергии волны в каждой точке среды не остается постоянной, а периодически изменяется при прохождении волны: энергия распространяется вместе с волной.

Любой источник волн обладает энергией W , которую волна при своем распространении передает частицам среды.

Интенсивность волны I показывает, какую энергию в среднем переносит волна за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны\

В СИ единицей интенсивности волны является ватт на квадратный метр Дж/(м 2 \(\cdot\) c) = Вт/м 2

Энергия и интенсивность волны прямо пропорциональны квадрату ее амплитуды \(~I \sim A^2\).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 425-428.

Если колебательное движение возбуждают в какой - либо точке среды, то оно распространяется от одной точки к другой в результате взаимодействия частиц вещества. Процесс распространения колебаний называют волной.

Рассматривая механические волны, мы не будем обращать внимание на внутреннее строение среды. Вещество при этом считаем сплошной средой, которая изменяется от одной точки к другой.

Частицей (материальной точкой), будем называть маленький элемент объема среды, размеры которого, много больше, чем расстояния между молекулами.

Механические волны распространяются только в средах, которые обладают свойствами упругости. Силы упругости в таких веществах при небольших деформациях пропорциональны величине деформации.

Основным свойством волнового процесса является то, что волна, перенося энергию и колебательное движение, не переносит массу.

Волны бывают продольные и поперечные.

Продольные волны

Волну называю продольной, в том случае, если частицы среды совершают колебания в направлении распространения волны.

Продольные волны распространяются в веществе, в котором возникают силы упругости, при деформации растяжения и сжатия в веществе в любом агрегатном состоянии.

При распространении продольной волны в среде возникают чередования сгущений и разрежений частиц, перемещающихся в направлении распространения волны со скоростью ${\rm v}$. Сдвиг частиц в этой волне происходит по линии, которая соединяет их центры, то есть вызывает изменение объема. Все время существования волны, элементы среды выполняют колебания у своих положений равновесия, при этом разные частицы совершают колебания со сдвигом по фазе. В твердых телах скорость распространения продольных волн больше, чем скорость поперечных волн.

Волны в жидкостях и газах всегда продольные. В твердом теле тип волны зависит от способа ее возбуждения. Волны на свободной поверхности жидкости являются смешанными, они одновременно и продольные и поперечные. Траекторией движения частицы воды на поверхности при волновом процессе является эллипс или еще более сложная фигура.

Акустические волны (пример продольных волн)

Звуковые (или акустические) волны, являются продольными волнам. Звуковые волны в жидкостях и газах представляют собой колебания давления, распространяющиеся в среде. Продольные волны, имеющие частоты от 17 до 20~000 Гц называют звуковыми.

Акустические колебания с частотой ниже границы слышимости называют инфразвуком. Акустические колебания с частотой выше 20~000 Гц называют ультразвуком.

Акустические волны в вакууме распространяться не могут, так как упругие волны способны распространяться только в той среде, где имеется связь между отдельными частицами вещества. Скорость звука в воздухе равна в среднем 330 м/с.

Распространение в упругой среде продольных звуковых волн связано с объемной деформацией. В этом процессе давление в каждой точке среды непрерывно изменяется. Это давление равно суме равновесного давления среды и добавочного давления (звуковое давление), которое появляется в результате деформации среды.

Сжатие и растяжение пружины (пример продольных волн)

Допустим, что упругая пружина подвешена горизонтально на нитях. По одному концу пружины ударяют так, что сила деформации направлена вдоль оси пружины. От удара происходит сближение нескольких витков пружины, возникает сила упругости. Под воздействием силы упругости витки расходятся. Двигаясь по инерции, витки пружины проходят положение равновесия, образуется разрежение. Некоторое время витки пружины на конце в месте удара будут колебаться около своего положения равновесия. Данные колебания с течением времени передаются от витка к витку по всей пружине. В результате происходит распространение сгущения и разрежения витков, распространяется продольная упругая волна.

Аналогично продольная волна распространяется по металлическому стержню, если ударить по его концу с силой, направленное вдоль его оси.

Поперечные волны

Волну называют поперечной волной, если колебания частиц среды происходят в направлениях перпендикулярных к направлению распространения волны.

Механические волны могут быть поперечными только в среде, в которой возможны деформации сдвига (среда обладает упругостью формы). Поперечные механические волны возникают в твердых телах.

Волна, распространяющаяся по струне (пример поперечной волны)

Пусть одномерная поперечная волна распространяется по оси X , от источника волны, находящегося в начале координат - точке О. Примером такой волны является, волна, которая распространяется в упругой бесконечной струне, один из концов которой заставляют совершать колебательные движения. Уравнение такой одномерной волны:

\\ }\left(1\right),\]

$k$ -волновое число$;;\ \lambda $ - длина волны; $v$ - фазовая скорость волны; $A$ - амплитуда; $\omega $- циклическая частота колебаний; $\varphi $ - начальная фаза; величина $\left[\omega t-kx+\varphi \right]$ называется фазой волны в произвольной точке.

Примеры задач с решением

Пример 1

Задание. Какова длина поперечной волны, если она распространяется по упругой струне со скоростью $v=10\ \frac{м}{с}$, при этом период колебаний струны составляет $T=1\ c$?

Решение. Сделаем рисунок.

Длина волны - это расстояние, которое волна проходит за один период (рис.1), следовательно, ее можно найти по формуле:

\[\lambda =Tv\ \left(1.1\right).\]

Вычислим длину волны:

\[\lambda =10\cdot 1=10\ (м)\]

Ответ. $\lambda =10$ м

Пример 2

Задание. Звуковые колебания с частотой $\nu $ и амплитудой $A$ распространяются в упругой среде. Какова максимальная скорость движения частиц среды?

Решение. Запишем уравнение одномерной волны:

\\ }\left(2.1\right),\]

Скорость движения частиц среды равна:

\[\frac{ds}{dt}=-A\omega {\sin \left[\omega t-kx+\varphi \right]\ }\ \left(2.2\right).\]

Максимальное значение выражения (2.2), учитывая область значений функции синус:

\[{\left(\frac{ds}{dt}\right)}_{max}=\left|A\omega \right|\left(2.3\right).\]

Циклическую частоту найдем как:

\[\omega =2\pi \nu \ \left(2.4\right).\]

Окончательно максимальная величина скорости движения частиц среды в нашей продольной (звуковой) волне равна:

\[{\left(\frac{ds}{dt}\right)}_{max}=2\pi A\nu .\]

Ответ. ${\left(\frac{ds}{dt}\right)}_{max}=2\pi A\nu$


Top