Как определить проекцию силы на ось. В какую сторону направлена реакция стержня с шарнирным крепление концов? Сила - векторная величина

Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 1.15).

рис. 1.15

Величина проекции силы на ось равна произведению модуля си­лы на косинус угла между вектором силы и положительным напра­влением оси. Таким образом, проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси (рис. 1.16).

рис. 1.16

F 1x = F 1 cos α 1 > 0; F 2x = F 2 cos α 2 = - F 2 cos β 2 ;

cos α 2 = cos (180° - β 2) = - cos β 2 ;

F 3x = F 3 cos 90° = 0; F 4x = F 4 cos 180° = - F 4

Проекция силы на две взаимно перпендикулярные оси

F x = F cos a > 0;

F y = F cos β = F sin α > 0 . рис.1.17

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. введение.. любое явление в ок ружающем нас макромире связано с движением следовательно не может не иметь того или иного..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аксиомы статики
Условия, при которых тело может находиться в равновесии, выводиться из нескольких основных положений, применяемых без доказательств, но подтвержденных опытом и называемых аксиомами статики.

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободным называется тело, которое не испыты

Определение равнодействующей геометрическим способом
Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (рис. 1.13).

Определение равнодействующей системы сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Условия равновесия плоской системы сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: FΣ

Методика решения задач
Решение каждой задачи можно условно разделить на три этапа. Первый этап: Отбрасываем внешние связи системы тел, равновесие которой рассматривается, и заменяем их действие реакциями. Необхо

Пара сил и момент силы относительно точки
Знать обозначение, модуль и определение моментов пары сил и силы относительно точки, условия равновесия системы пар сил. Уметь определять моменты пар сил и момент силы относитель

Эквивалентность пар
Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нару­шается его

Опоры и опорные реакции балок
Правило для определения направления реакций связей (рис.1.22). Шарнирно-подвижная опора допускает поворот вокруг оси шарнира и линейное перемещение параллельно опорной плос­кости.

Приведение силы к точке
Произвольная плоская система сил представляет собой систему сил, линии действия которых расположены в плоскости каким угодно образом (рис. 1.23). Возьмем силу

Приведение плоской системы сил к данной точке
Метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, ч

Влияние точки приведения
Точка приведения выбрана произвольно. Произвольная плоская система сил представляет собой систему сил, линия действия которых расположены в плоскости каким угодно образом. При изменении по

Теорема о моменте равнодействующей (теорема Вариньона)
В общем случае произвольная плоская система сил приводится к главному вектору F"гл и к главному моменту Мгл относительно выбранного центра приведения, причем гла

Условие равновесия произвольно плоской системы сил
1)При равновесии главный вектор системы равен нулю (=0).

Балочные системы. Определение реакций опор и моментов защемления
Иметь представление о видах опор и возникающих реакциях в опорах. Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно точки
Момент силы относительно оси характеризуется вра­щательным эффектом, создаваемым силой, стремящейся повернуть тело вокруг данной оси. Пусть к телу в про­извольной точке К приложена сила

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 1.3

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Некоторые определения теории механизмов и машин
При дальнейшем изучении предмета теоретической ме­ханики, в особенности при решении задач, мы столкнемся с но­выми понятиями, относящимися к науке, которая называется теорией механизмов и машин.

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлени

Ускорение точки при криволинейном движении
При движении точки по криволинейном траектории скорость меняет свое направление. Представим себе точку М, которая за время Δt, двигаясь по криволинейной траектории, переместилас

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 2.9, а)

Неравномерное движение
При неравномерном движении численные значения скорости и ускорения меняются. Уравнение неравномерного движения в общем виде представля­ет собой уравнение третьей S = f

Простейшие движения твердого тела
Иметь представление о поступательном движении, его особенности и параметрах, о вращательном движении тела и его параметрах. Знать формулы для определения параметров поступательно

Вращательное движение
Движение, при котором по крайнем мере точки твердого тела или неизменяемой системы остаются неподвижными, называемыми вращательным; прямая линия, соединяющая эти две точки,

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω = const. Уравнение (закон) равномерного вращения в данном случае име­ет вид: `

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки Л, расположенной на расстоянии г а от оси вращения (рис. 11.6, 11.7).

Преобразование вращательного движения
Преобразование вращательного движения осуществля­ется разнообразными механизмами, которые называются пере­дачами. Наиболее распространенными являются зубчатые и фрикционные передачи, а также

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Метод определения мгновенного центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Понятие трения
Абсолютно гладких и абсолютно твердых тел в природе не существует, и поэтому при перемещении одного тела по по­верхности другого возникает сопротивление, которое называется трением.

Трение скольжения
Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению. Трение скольжения, как и трение покоя, обуслов

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Принцип кинетостатики (принцип Даламбера)
Принцип кинетостатики используют для упрощения решения ряда технических задач. Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям). Даламбер предло

Работа постоянной силы на прямолинейном пути
Работа силы в общем случае численно равна произведению мо­дуля силы на длину пройденного мм пути и на косинус угла между направлением силы и направлением перемещения (рис. 3.8): W

Работа постоянной силы на криволинейном пути
Пусть точка М движется по дуге окружности и сила F соста­вляет некоторый угол а

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности.

Коэффициент полезного действия
Способность тела при переходе из одного состояния в другое совершать работу называется энергией. Энергия есть общая мера различных форм движения и взаимодействия матери

Закон изменения количества движения
Количеством движения материальной точки называется вектор­ная величина, равная произведению массы точки на ее скорость

Потенциальная и кинитецеская энергия
Существуют две основные формы механической энергии: потен­циальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится им

Закон изменения кинетической энергии
Пусть на материальную точку массой m действует постоянная сила. В этом случае точк

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как меха­ническая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Oz с угловой скоростью

Моменты инерции некоторых тел
Момент инерции сплошного цилиндра (рис. 3.19) Момент инерции полого тонкостен­ного цили

Сопротивление материалов
Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях. Зн

Основные положения. Гипотезы и допущения
Практика показывает, что все части конструкций под действием нагрузок деформируются, т. е. изменяет свою форму и размеры, а в некоторых случаях происходит разрушение конструкции.

Внешние силы
Всопротивлении материалов под внешними воздейст­виями подразумевается не только силовое взаимодейст­вие, но и тепловое, возникающее из-за неравномерного изменения температурного ре

Деформации линейные и угловые. Упругость материалов
В отличие от теоретической механики, где изучалось взаимодействие абсолютно жестких (недеформируемых) тел, в сопротивлении материалов исследуется поведение конструкций, материал которых способен де

Допущения и ограничения, принятые в сопротивлении материалов
Реальные строительные материалы, из которых воз­водятся различные здания и сооружения, представляют собой довольно сложные и неоднородные твердые тела, обладающие различными свойствами. Учесть это

Виды нагрузок и основных деформаций
В процессе работы машин и сооружений их узлы и детали воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменение внутренних сил и

Формы элементов конструкции
Все многообразие форм сводится к трем видам по одному при­знаку. 1. Брус - любое тело, у которого длина значительно больше других размеров. В зависимости от форм продольной

Метод сечений. Напряжение
Знать метод сечений, внутренние силовые факторы, составляющие напряжений. Уметь определять виды нагружений и внутренние силовые факторы в поперечных сечениях. Для ра

Растяжение и сжатие
Растяжением или сжатием называют вид нагружения, при ко­тором в поперечном сечении бруса возникает только один внутрен­ний силовой фактор - продольная сила. Продольные силы м

Центральное растяжение прямого бруса. Напряжения
Центральным растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечения бруса возникает только продольная (нормаль­ная) сила N, а все остальные внутренние

Напряжения при растяжении и сжатии
При растяжении и сжатии в сечении действует только нормаль­ное напряжение. Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади. Таким

Продольные и поперечные деформации. Закон Гука
Иметь представление о продольных и поперечных деформациях и их связи. Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений. Уметь проводи

Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 - 1703).

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы. Закон Гука σ=Еε. Откуда.

Механические испытания. Статические испытания на растяжение и сжатие
Это стандартные испыта­ния: оборудование - стандарт­ная разрывная машина, стан- дартный образец (круглый или плоский), стандартная методика расчета. На рис. 4.15 представлена схема

Механические характеристики
Механические характеристики материалов, т. е. величины, характеризующие их прочность, пластичность, упругость, твер­дость, а также упругие постоянные Е и υ, необходимые конструктору для

Проекция силы на ось – это алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и вектором силы (т.е. это отрезок, откладываемый силой на соответствующие оси. Рисунок 1.13):

F x = Fcosα ;

P x = Pcosβ= P⋅ cos90 o =0 ;

R x =Rcosγ = -R⋅ cos(180 o -γ) .

Рисунок 1.13

Проекция силы на ось может быть положительной, рис. 1.13а (0 ≤ α < π/2 ), равной нулю, рис. 1.13б (β = π/2 ) и отрицательной, рис. 1.13в (π/2 < γ ≤ π ).

Иногда для нахождения проекции силы на ось сначала нужно найти ее проекцию на плоскость, а потом проекцию на ось (рисунок 1.14):

P z = P sinα ;

P x = (P cosα)cosβ ;

Py= (P cosα)cosγ = P cosα⋅ cos(90 o -β) .

Рисунок 1.14

4. Сосре­доточенными считаются силы, приложенные к малой поверхности, размеры которой малы по сравнению с размерами тела. Однако при расчете напряжений вблизи зоны приложения силы нагрузку следует считать распределенной. К сосредоточенным нагрузкам относят не только сосредоточенные силы, но и пары сил, примером которых можно счи­тать нагрузку, создаваемую гаечным ключом при закручивании гайки. Сосредоточенные усилия измеряются в кН.

Распределенные нагрузки бывают распределенными по длине и по площади. К распределенным нагрузкам относят давление жидкости, газа или другого тела. Распределенные силы измеряются, как правило, в кН/м (распределенные по длине) и кН/м2 (распределенные по площади).

ИНТЕНСИВНОСТЬ НАГРУЗКИ нагрузка, приходящаяся на единицу нагруженной площади или длины

5.Сложение сходящихся сил. Система сил, линии действия которых пересекаются в одной точке,

называется системой с х о д я щ и х с я с и л.

Сложить две или несколько сил - это значит заменить эти силы одной силой, им эквивалентной, т.е.

найти их равнодействующую.

Из ADC: т.к.

Разложить силу - значит найти ее составляющие. Две равные силы, направленные по одной прямой в противоположные стороны, взаимно уравновешиваются, тело при действии этих сил находится в равновесии, т. е. в состоянии покоя.

6. Момент силы относительно центра (или точки).

Опыт показывает, что под действием силы твердое тело может наряду с поступательным перемещением совершать вращение вокруг того или иного центра. Вращательный эффект силы характеризуется ее момен­том

Рассмотрим силу , приложенную в точке А твердого тела (рис. 20). Допустим, что сила стремится повернуть тело вокруг центра О . Перпендикуляр h , опущенный из центра O на линию действия силы , на­зывается плечом силы от­носительно центра О . Так как точку приложения силы можно произвольно переме­щать вдоль линии действия, то, очевидно, вращательный эффект силы будет зависеть: 1) от модуля силы F и длины плеча h ; 2) от поло­жения плоскости поворота ОАВ , проходящей через центр О и силуF ; 3) от направления поворота к этой плоскости.



Рис.20

Ограничимся пока рассмотрением систем сил, лежащих в одной плоскости. В этом случае плоскость поворота для всех сил является общей и в дополнительном задании не нуждается.

Тогда для количественного измерения вращательного эффекта можно ввести следующее понятие о моменте силы: моментом силы относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.

Момент силы относительно центра О будем обозначать сим­волом m 0 (F ). Следовательно,

В дальнейшем условимся считать, что момент имеет знак плюс, если сила стремится повернуть тело вокруг центра О против хода ча­совой стрелки, и знак минус, - если по ходу часовой стрелки. Так, для силы , изображенной на рис.20,а , момент относительно центра О имеет знак плюс, а для силы, показанной на рис.20,б , - знак ми­нус.

Отметим следующие свойства момента силы:

1) Момент силы не изменяется при переносе точки приложения силы вдольее линии действия.

2) Момент силы относительно центра О равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр О (плечо равно нулю).



3) Момент силы численно выражается удвоенной площадью тре­угольника ОАВ (рис. 20,б )

Этот результат следует из того, что

Проекция силы на ось определяется отрезком оси, отсекаемым

перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Величина проекции силы на ось равна произведению модуля си­лы на косинус угла между вектором силы и положительным напра­влением оси. Таким образом, проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси (рис. 3.2).


Проекция силы на две взаимно перпендикулярные оси (рис. 3.3).


Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Сила инерции
Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел. Сила инерции - сила, возникающая при разгоне или торможе­нии тел

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Теоретический материал

Связь – это тело, препятствующее перемещению другого тела под действием силы.

Реакция связи – сила, возникающая внутри самой связи. Реакция всегда противоположна тому направлению, по которому связь препятствует движению тела. Все тела могут быть свободными и несвободными. Свободное тело не имеет связи. Любое несвободное тело можно представить свободным, если действующие на него связи заменить реакциями.

Виды связей:

а) Гладкая поверхность или плоскость , то есть поверхность не имеющая трения. Реакция этой связи всегда направлена перпендикулярно точке соприкосновения. R – реакция связи

б) Гладкая опора Реакции этой связи направлены перпендикулярно к точке соприкосновения. (Реакция – сила внутри конструкции). Ее величина зависит от материала, размера и внешней силы.

в) Гибкая связь – связь, работающая только на растяжение, которая осуществляется тросом, канатом, цепью. Реакция гибкой связи направлена по самой связи к точке закрепления, то есть противоположно направлению силы.


г) Жесткие стержни . Осуществляется различными балками, двутаврами, швеллерами. Связь работает как на растяжение, так и на сжатие. Если стержень испытывает растяжение, то реакция направлена по стержню к месту закрепления, если на сжатие, то реакция - за стержень.

д) Шарнирная опора . Опоры бывают подвижные и неподвижные. Неподвижная опора имеет две реакции, расположенные перпендикулярно друг к другу. Подвижная опора имеет одну реакцию, перпендикулярно поверхности.

Подвижная опора Неподвижная опора


Задания для выполнения работы

1. Вычертить рисунки своего варианта.

2. Описать рисунок.

3. Определить вид связи и заменить их реакциями.

Вариант 18

1.
2.
3.

Контрольные вопросы:

1. В чем отличие между осью и проекцией?

2. Сколько уравнений равновесия Вы составляли при решении задачи?

3. Методика решения задач ПССС.



4. Дайте определение плоской системе сходящихся сил.

5. Какой величиной является проекция силы на координатную плоскость?

Литература:

1. Вереин Л.И. Техническая механика – М: Академия, 2006.

2. Мовнин М.С. Основы технической механики – СПБ: Политехника, 2003.

3. Молчанова Е.В., Шурыгина Г.Н. Статика и сопротивление материалов - Томск, 2008.

Практическая работа №2

Тема урока: Определение реакций связи плоской системы сходящихся сил.

Тип урока: закрепление полученных знаний.

Цель урока: Научиться определять реакции связи плоской системы сходящихся сил

Обеспечивающие средства:

1. методическое руководство по выполнению работы;

2. индивидуальное задание;

3. тетрадь для практических работ;

7. калькулятор.

Технология работы:

1.Внимательно изучите методические указания, предложенный теоретический материал.

2.В соответствие с вариантом, выполнить задание по методике представленной ниже.

3.Сделайте выводы о проделанной работе.

4.Ответить на контрольные вопросы.

Теоретический материал

Условия и уравнения равновесия плоской системы произвольно- расположенных сил.

При приведении системы сил к точке получается R гл и М гл.

Если система сил находится в равновесии, то R гл = 0, М гл = 0.

Запишем три вида уравнений равновесия для данной системы.

Первый вид


Top