Схемы регуляторов температуры для паяльника своими руками. Схемы простых регуляторов для паяльника

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки. Наиболее распространенные мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения. Сегодня применяются самодельные и заводские установки.

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В.

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу. Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении. Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена.

Схема регулятора мощности включает в себя резисторы — МЛТ и R5 - СП-0,4. Транзистор можно использовать любой.

Плата и корпус для прибора

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах.

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных - 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование - от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

От компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе. Хорошо, если один такой лежит дома без дела.

Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4. Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника. Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше.

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем. От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки. Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения.

Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно. Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности. Повышающий регулятор придется собирать самостоятельно.

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя . Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.


Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.


Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания . Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.


Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.


Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.


Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.


Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Типичной проблемой при работе с паяльником является обгорание жала. Связано это с его большим нагревом. Во время работы паяльные операции требуют неодинаковой мощности, поэтому приходится использовать паяльники с разной мощностью. Для защиты устройства от перегрева и скорости изменения мощности лучше всего применять паяльник с регулировкой температуры. Это позволит за считаные секунды изменить параметры работы и продлить срок эксплуатации устройства.

История происхождения

Паяльник - это инструмент, предназначенный для передачи тепла материалу при соприкосновении с ним. Прямое его назначение - создание неразъемного соединения посредством расплавления припоя.

До начала XX века существовали два типа паяльных приспособлений: газовый и медный. В 1921 году изобретатель из Германии Эрнст Сакс изобрёл и зарегистрировал патент на паяльник, нагрев которого происходил под действием электрического тока. В 1941 году Карл Уэллер запатентовал инструмент трансформаторного вида, напоминающего формой пистолет. Пропуская через свой наконечник ток, он быстро нагревался.

Через двадцать лет этот же изобретатель предложил использовать термоэлемент в паяльнике для контроля температуры нагрева. В конструкцию входили спрессованные друг с другом две металлические пластинки с разным тепловым расширением. С середины 60-х годов из-за развития полупроводниковых технологий паяльный инструмент стал выпускаться импульсного и индукционного типа работы.

Виды паяльников

Основное различие паяльных устройств заключается в их максимальной мощности, от которой зависит и температура нагрева. Кроме этого, электрические паяльники разделяются по значению питающего их напряжения. Они выпускаются как для сети переменного напряжения 220 вольт, так и постоянного его значения разной величины. Разделение паяльников происходит также по виду и принципу действия.

По принципу работы бывают:

  • нихромовые;
  • керамические;
  • импульсные;
  • индукционные;
  • термовоздушные;
  • инфракрасные;
  • газовые;
  • открытого типа.

По виду они бывают стержневые и молотковые. Первые предназначены для точечного нагрева, а вторые для прогрева определённой площади.

Принцип работы

Большинство приборов в основе работы используют преобразование электрической энергии в тепловую. Для этого во внутренней части устройства располагается нагревательный элемент. Но некоторые типы устройства просто нагреваются на огне или используют подожжённый направленный поток газа.

В нихромовых устройствах используется проволочная спираль, через которую пропускается ток. Спираль располагается на диэлектрике. Нагреваясь, спираль передаёт тепло медному жалу. Температура нагрева регулируется термодатчиком, который при достижении определённого значения нагрева отсоединяет спираль от электрической линии, а при остывании опять подключает её к ней. Термодатчиком является не что иное, как термопара.

В керамических паяльниках в качестве нагревателей используются стержни. Регулировка в них чаще всего осуществляется методом понижения величины напряжения подающегося на керамические стержни.

Индукционное оборудование работает за счёт индуктора. Жало покрывается ферромагнетиком. С помощью катушки наводится магнитное поле и появляются в проводнике токи, приводящие к нагреву жала. При работе наступает такой момент, что жало теряет свои магнитные свойства, нагрев останавливается, а при остывании свойства возвращаются и нагрев восстанавливается.

Работа импульсных паяльников основана на использовании высокочастотного трансформатора. Вторичная обмотка трансформатора имеет несколько витков, выполненных из толстого провода, концы которого и являются нагревателями. Частотный преобразователь увеличивает частоту входного сигнала, который снижается на трансформаторе. Регулировка нагрева происходит при помощи регулировки мощности.

Термовоздушный паяльник, или, как его называют, термофен, при работе использует горячий воздух, который нагревается при прохождении через спираль, выполненную из нихрома. Температуру в нём можно регулировать как снижением величины напряжения подаваемого на проволоку, так и изменением потока воздуха.

Одним из видов паяльников стали устройства, использующие инфракрасное излучение. В основе их работы лежит процесс нагрева излучением с длиной волны до 10 мкм. Для регулирования применяется сложный узел управления, изменяющий как длину волны, так и её интенсивность.

Газовые представляют собой обычные горелки, вместо жала использующие сопла разного диаметра. Управление температурой практически невозможно, кроме изменения интенсивности выхода газа с помощью заслонки.

Понимая принцип работы паяльника, можно не только осуществить его ремонт своими руками, но и доработать его конструкцию, например, сделать его регулируемым.

Устройства для регулировки

Цена паяльников с регулировкой температуры превышает цену обыкновенных устройств в несколько раз. Поэтому в некоторых случаях есть смысл купить хороший обыкновенный паяльник, а регулятор выполнить самому. Таким образом, управление паяльным оборудованием выполняется двумя способами контроля:

  • мощностью;
  • температурой.

Контроль температуры позволяет достичь более точных показателей, но реализовать проще управление мощностью. При этом регулятор можно выполнить независимым и подключать к нему различные приборы.

Универсальный стабилизатор

Паяльник с терморегулятором можно изготовить, используя заводского исполнения диммер или сконструировать по его аналогии самостоятельно. Диммер — это регулятор, с помощью которого изменяется мощность, подводимая к паяльнику. В сети 220 вольт протекает ток переменной величины с синусоидальной формой. Если этот сигнал обрезать, то на паяльник будет подаваться уже искажённая синусоида, а значит, изменится и величина мощности. Для этого перед нагрузкой в разрыв включается устройство, которое пропускает ток только в момент достижения сигналом определённой величины.

Диммеры различают по принципу действия. Они могут быть:

  • аналоговыми;
  • импульсными;
  • комбинированными.

Схема диммера реализуется с использованием различных радиокомпонентов : тиристоров, симисторов, специализированных микросхем. Самая несложная модель диммера выпускается с механической ручкой регулятора. Принцип действия модели основан на изменении сопротивления в цепи. По сути, это тот же самый реостат. Диммеры на симисторах обрезают передний фронт входного напряжения. Контроллеры используют в своей работе сложную электронную схему понижения напряжения.

Самостоятельно выполнить диммер проще, используя для этого тиристор. Для схемы не понадобятся дефицитные детали , и собирается она простым навесным монтажом.

Работа устройства основана на способности открывания тиристора в моменты времени при подаче сигнала на его управляющий вывод. Входной ток, поступая на конденсатор через цепочку резисторов, заряжает его. При этом динистор открывается и пропускает через себя кратковременно ток, поступающий на управление тиристора. Конденсатор разряжается и тиристор закрывается. При следующем цикле всё повторяется. Изменяя сопротивление цепи, регулируется длительность заряда конденсатора, а значит и время открытого состояния тиристора. Таким образом, устанавливается время, в течение которого паяльник подключается к сети 220 вольт.

Простой терморегулятор

Используя в качестве основы стабилитрон TL431, можно собрать простой терморегулятор своими руками. Такая схема состоит из недорогих радиокомпонентов и практически не нуждается в настройке.

Стабилитрон VD2 TL431 включён по схеме компаратора с одним входом. Величина требуемого напряжения определяется делителем, собранным на резисторах R1-R3. В качестве R3 используется термистор, свойство которого заключается в уменьшении сопротивления при нагреве. С помощью R1 устанавливается значение температуры, при котором устройство отключает паяльник от питания.

При достижении на стабилитроне значения сигнала, превышающего 2,5 вольта, он пробивается, и через него поступает питание на коммутационное реле K1. Реле подаёт сигнал на управляющий вывод симистора и паяльник включается. При нагреве сопротивление термодатчика R3 уменьшается. Напряжение на TL431 опускается ниже сравниваемого и цепь питания симистора разрывается.

Для паяльного инструмента мощностью до 200 Вт симистор можно использовать без радиатора. В качестве реле подойдёт РЭС55А с рабочим напряжением 12 вольт.

Повышение мощности

Случается так, что возникает потребность не только уменьшить мощность паяльного оборудования, но и наоборот, увеличить. Смысл идеи заключается в том, что можно использовать напряжение, возникающее на сетевом конденсаторе, значение которого составляет 310 вольт. Обусловлено это тем, что сетевое напряжение имеет амплитудное значение больше чем его эффективное в 1,41 раза. Из этого напряжения формируются импульсы прямоугольной амплитуды.

Меняя коэффициент заполнения, можно управлять эффективным значением импульсного сигнала от нуля до 1,41 от эффективного значения входного напряжения. Таким образом, мощность нагрева паяльника будет изменяться от нуля до удвоенной номинальной мощности.

Входная часть представляет собой стандартно собранный выпрямитель. Выходной блок выполнен на полевом транзисторе VT1 IRF840 и способен коммутировать паяльник с мощностью 65 Вт. Управление работой транзистора происходит микросхемой с широтно-импульсной модуляцией DD1. Конденсатор С2 стоит в корректирующей цепочке и задаёт частоту генерации. Питание микросхемы осуществляется на радиодеталях R5, VD4, C3. Диод VD5 используется для защиты транзистора.

Паяльная станция

Паяльная станция, это в принципе, тот же самый регулируемый паяльник. Её отличие от него в наличии удобной индикации и дополнительных приспособлениях, помогающих облегчить процесс пайки. Обычно к такому оборудованию подключается электрический паяльник и фен. Если есть опыт радиолюбителя, можно попробовать собрать схему паяльной станции своими руками. В её основе лежит микроконтроллер (МК) ATMEGA328.

Программируется такой МК на программаторе, для этого подойдёт Adruino или самодельное устройство. К микроконтроллеру подключается индикатор, в качестве которого используется жидкокристаллический дисплей LCD1602. Управление станцией простое, для этого используется переменное сопротивление на 10 кОм. Поворотом первого выставляется температура паяльника, второго - фена, а третьим можно уменьшить или увеличить поток воздуха фена.

Полевой транзистор, работающий в ключевом режиме, вместе с симистором устанавливается на радиатор через диэлектрическую прокладку. Светодиоды используются с малым потреблением тока, не более 20 мА. Паяльник и фен, подключаемые к станции, должны иметь встроенную термопару, сигнал с которой обрабатывается МК. Рекомендуемая мощность паяльника 40 Вт, а фена - не более 600 Вт.

Источник питания потребуется на 24 вольта с током не меньше двух ампер. Для питания можно задействовать готовый адаптер от моноблока или ноутбука. Кроме стабилизированного напряжения он содержит различного вида защиту. А можно выполнить и самостоятельно аналоговый типа. Для этого потребуется трансформатор со вторичной обмоткой, рассчитанной на 18–20 вольт, и выпрямительный мост с конденсатором.

После сборки схемы проводится её наладка. Все операции заключаются в подстройке температуры. В первую очередь выставляется температура на паяльнике. Например, на индикаторе выставляем 300 градусов. Затем, прижав термометр к жалу, с помощью регулируемого резистора, устанавливается температура, соответствующая реальным показаниям. Таким же образом калибруется и температура фена.

Все радиоэлементы удобно приобрести в китайских интернет-магазинах. Такое устройство без учёта самодельного корпуса обойдётся порядка ста долларов США со всеми принадлежностями. Прошивку для устройства можно скачать тут: http://x-shoker.ru/lay/pajalnaja_stancija.rar.

Конечно, собрать начинающему радиолюбителю цифровой регулятор температуры своими руками будет сложно. Поэтому можно приобрести готовые модули стабилизации температуры. Они представляют собой платы с распаянными разъёмами и радиодеталями. Понадобится только купить корпус или изготовить его самостоятельно.

Таким образом, используя стабилизатор нагрева паяльника, легко добиться его универсальности. При этом диапазон изменения температуры достигается в пределах от 0 до 140 процентов.

Работа многих связана с применением паяльника. Для кого-то это просто хобби. Паяльники бывают разные. Могут быть простые, но надежные, могут представлять собой современные паяльные станции, в том числе инфракрасные. Для получения качественной пайки требуется иметь паяльник нужной мощности и нагревать его до определенной температуры.

Рисунок 1. Схема регулятора температуры, собранная на тиристоре КУ 101Б.

Для помощи в этом деле предназначены различные регуляторы температуры для паяльника. Они продаются в магазинах, но умелые руки могут самостоятельно собрать подобное устройство с учетом своих требований.

Достоинства регуляторов температуры

Большинство из домашних мастеров с юных лет пользуется паяльником мощностью в 40 Вт. Раньше трудно было что-то купить с другими параметрами. Паяльник сам по себе удобный, с его помощью можно паять многие предметы. Но пользоваться им при монтаже радиоэлектронных схем неудобно. Тут и пригодится помощь регулятора температуры для паяльника:

Рисунок 2. Схема простейшего регулятора температуры.

  • жало паяльника прогревается до оптимальной температуры;
  • продлевается срок службы жала;
  • радиодетали никогда не перегреются;
  • не произойдет отслоения токоведущих элементов на печатной плате;
  • при вынужденном перерыве в работе паяльник не нужно выключать из сети.

Не в меру нагретый паяльник не держит на жале припой, с перегретого паяльника он капает, делая место пайки очень непрочным. Жало покрывается слоем окалины, которую счищают только шкуркой и напильниками. В результате появляются кратеры, которые тоже нужно удалять, сокращая длину жала. Если использовать регулятор температуры, такого не произойдет, жало всегда будет готово к работе. При перерыве в работе достаточно уменьшить его нагрев, не выключая из сети. После перерыва горячий инструмент быстро наберет нужную температуру.

Вернуться к оглавлению

Простые схемы регулятора температуры

В качестве регулятора можно использовать ЛАТР (лабораторный трансформатор), регулятор освещенности для настольной лампы, блок питания КЭФ-8, современную паяльную станцию.

Рисунок 3. Схема выключателя для регулятора.

Современные паяльные станции способны регулировать температуру жала паяльника в разных режимах – в ручном, в полностью автоматическом. Но для домашнего мастера стоимость их довольно значительна. Из практики видно, что автоматическая регулировка практически не нужна, так как напряжение в сети обычно стабильное, температура в помещении, где ведется пайка, тоже не меняется. Поэтому для сборки может использоваться простая схема регулятора температуры, собранная на тиристоре КУ 101Б (рис.1). Этот регулятор с успехом используется для работы с паяльниками и лампами мощностью до 60 Вт.

Этот регулятор очень прост, но позволяет менять напряжение в пределах 150-210 В. Продолжительность нахождения тиристора в открытом состоянии зависит от положения переменного резистора R3. Этим резистором и осуществляется регулировка напряжения на выходе прибора. Пределы регулировки устанавливаются резисторами R1 и R4. С помощью подбора R1 устанавливается минимальное напряжение, R4 – максимальное. Диод Д226Б можно заменить на любой с обратным напряжением более 300 В. Тиристор подойдет КУ101Г, КУ101Е. Для паяльника мощностью свыше 30 Вт диод нужно брать Д245А, тиристор КУ201Д-КУ201Л. Плата после сборки может выглядеть примерно так, как показано на рис. 2.

Для индикации работы прибора можно регулятор оснастить светодиодом, который будет светиться при наличии напряжения на его входе. Не будет лишним и отдельный выключатель (рис. 3).

Рисунок 4. Схема регулятора температуры с симистором.

Следующая схема регулятора зарекомендовала себя с хорошей стороны (рис. 4). Изделие получается очень надежным и простым. Деталей требуется минимум. Главная из них – симистор КУ208Г. Из светодиодов достаточно оставить HL1, который будет сигнализировать о наличии напряжения на входе и о работе регулятора. Корпусом для собранной схемы может быть подходящих размеров коробочка. Можно для этой цели использовать корпус электрической розетки или выключателя с установленным проводом питания и вилкой. Ось переменного резистора нужно вывести наружу и надеть на нее пластмассовую ручку. Рядом можно нанести деления. Такой простейший прибор способен регулировать нагрев паяльника в пределах примерно 50-100%. При этом мощность нагрузки рекомендуется в пределах 50 Вт. На практике схема работала с нагрузкой 100 Вт без последствий в течение часа.

При работе с электрическим паяльником температура его жала должна оставаться постоянной, что является гарантией получения высококачественного паяного соединения.

Однако в реальных условиях этот показатель постоянно меняется, приводя к остыванию или перегреву нагревательного элемента и необходимости устанавливать в цепях питания специальный регулятор мощности для паяльника.

Колебания температуры жала паяльного устройства могут быть объяснены следующими объективными причинами:

  • нестабильность входного питающего напряжения;
  • большие тепловые потери при пайке объёмных (массивных) деталей и проводников;
  • значительные колебания температуры окружающей среды.

Для компенсации воздействия этих факторов промышленностью освоен выпуск ряда устройств, имеющих специальный диммер для паяльника, обеспечивающий поддержание температуры жала в заданных пределах.

Однако при желании сэкономить на обустройстве домашней паяльной станции регулятор мощности вполне может быть изготовлен своими руками. Для этого потребуется знание основ электроники и предельная внимательность при изучении приводимых ниже инструкций.

Принцип работы контролера паяльной станции

Известно множество схем самодельных регуляторов нагрева паяльника, входящих в состав эксплуатируемой в домашних условиях станции. Но все они работают по одному и тому же принципу, заключающемуся в управлении величиной мощности, отдаваемой в нагрузку.

Распространённые варианты самодельных электронных регуляторов могут отличаться по следующим признакам:

  • вид электронной схемы;
  • элемент, используемый для изменения отдаваемой в нагрузку мощности;
  • количество ступеней регулировки и другие параметры.

Независимо от варианта исполнения любой самодельный контроллер паяльной станции представляет собой обычный электронный коммутатор, ограничивающий или увеличивающий полезную мощность в нагревательной спирали нагрузки.

Вследствие этого основным элементом регулятора в составе станции или вне её является мощный питающий узел, обеспечивающий возможность варьирования температуры жала в строго заданных пределах.

Образец классической со встроенным в неё регулируемым модулем питания приводится на фото.

Преобразователи на управляемых диодах

Каждый из возможных вариантов исполнения устройств отличается своей схемой и регулирующим элементом. Существуют схему регуляторов мощности на тиристорах, симисторах и другие варианты.

Тиристорные устройства

По своему схемному решению большинство известных блоков регулировки изготавливаются по тиристорной схеме с управлением от специально формируемого для этих целей напряжения.

Двухрежимная схема регулятора на тиристоре низкой мощности приводится на фото.

Посредством такого прибора удаётся управлять паяльниками, мощность которых не превышает 40 Ватт. Несмотря на небольшие габариты и отсутствие вентиляционного модуля преобразователь практически не греется при любом допустимом режиме работы.

Такое устройство может работать в двух режимах, один из которых соответствует состоянию ожидания. В этой ситуации ручка варьируемого по величине резистора R4 установлена в крайне правое по схеме положение, а тиристор VS2 полностью закрыт.

Питание поступает на паяльник через цепочку с диодом VD4, на котором величина напряжения снижается примерно до 110 Вольт.

Во втором режиме работы регулятор напряжения (R4) выводится из крайне правой позиции; причём в среднем его положении тиристор VS2 немного приоткрывается и начинает пропускать переменный ток.

Переход в это состояние сопровождается зажиганием индикатора VD6, срабатывающего при выходном питающем напряжении порядка 150 Вольт.

Путём дальнейшего вращения ручки регулятора R4 можно будет плавно увеличивать мощность на выходе, поднимая его выходной уровень до максимальной величины (220 Вольт).

Симисторные преобразователи

Ещё один способ организации управления паяльником предполагает применение электронной схемы, построенной на симисторе и также рассчитанной на нагрузку небольшой мощности.

Эта схема работает по принципу снижения эффективного значения напряжения на полупроводниковом выпрямителе, к которому подключается полезная нагрузка (паяльник).

Состояние регулировочного симистора зависит от положения «движка» переменного резистора R1, меняющего потенциал на его управляющем входе. При полностью открытом полупроводниковом приборе поступающая в паяльник мощность снижается примерно в два раза.

Простейший вариант управления

Самый простой регулятор напряжения, являющийся «усечённым» вариантом двух рассмотренных выше схем, предполагает механическое управление мощностью в паяльнике.

Такой регулятор мощности востребован в условиях, когда предполагаются длительные перерывы в работе и не имеет смысла держать паяльник всё время включённым.

В разомкнутом положении выключателя на него поступает небольшое по амплитуде напряжение (примерно 110 Вольт), обеспечивающее невысокую температуру нагрева жала.

Для приведения устройства в рабочее состояние достаточно включить тумблер S1, после чего наконечник паяльника быстро нагревается до требуемой температуры, и можно будет продолжить пайку.

Такой терморегулятор для паяльника позволяет в промежутках между пайками снижать температуру жала до минимального значения. Эта возможность обеспечивает замедление окислительных процессов в материале наконечника и заметно продлевает срок его эксплуатации.

На микроконтроллере

В том случае, когда исполнитель полностью уверен в своих силах, ему можно будет взяться за изготовление термостабилизатора для паяльника, работающего на микроконтроллере.

Этот вариант регулятора мощности выполняется в виде полноценной паяльной станции, имеющей два рабочих выхода с напряжениями 12 и 220 Вольт.

Первое из них имеет фиксированную величину и предназначается для питания миниатюрных слаботочных паяльников. Эта часть устройства собирается по обычной трансформаторной схеме, которую из-за её простоты можно не рассматривать.

На втором выходе собранного своими руками регулятора для паяльника действует переменное напряжение, амплитуда которого может меняться в диапазоне от 0 до 220 Вольт.

Схема этой части регулятора, совмещённая с контроллером типа PIC16F628A и цифровым индикатором выходного напряжения, приводится так же на фото.

Для безопасной эксплуатации оборудования с двумя отличающимися по величине выходными напряжениями самодельный регулятор должен иметь различные по конструкции (несовместимые между собой) розетки.

Подобная предусмотрительность исключает возможность ошибки при подключении паяльников, рассчитанных на разные напряжения.

Силовая часть такой схемы выполнена на симисторе марки ВТ 136 600, а регулировка мощности в нагрузке осуществляется посредством коммутатора кнопочного типа с десятью положениями.

Переключением кнопочного регулятора можно изменять уровень мощности в нагрузке, обозначаемый цифрами от 0 до 9-ти (эти значения выводятся на табло встроенного в устройство индикатора).

В качестве примера такого регулятора, собранного по схеме с контроллером SMT32, может быть рассмотрена станция, рассчитанная на подключение паяльников с жалами марки Т12.

Этот промышленный образец устройства, управляющего режимом нагрева подключаемого к нему паяльника, способен регулировать температуру жала в диапазоне от 9-ти до 99-ти градусов.

С его помощью также возможен автоматический переход в режим ожидания, при котором температура наконечника паяльника снижается до установленного инструкцией значения. Причём длительность этого состояния может регулироваться в интервале от 1 до 60-ти минут.

Добавим к этому, что в этом устройстве также предусмотрен режим плавного снижения температуры жала в течение того же регулируемого промежутка времени (1-60 минут).

В завершении обзора регуляторов мощности паяльных устройств отметим, что их изготовление в домашних условиях не является чем-то совсем недоступным для рядового пользователя.

При наличии определённого опыта работы с электронными схемами и после внимательного изучения приведённого здесь материала любой желающий может справиться с этой задачей вполне самостоятельно.


Top