Сила притяжения на марсе по сравнению с землей. Отображение сил гравитации солнечной системы

Дело в финансах

Примерно 25 миллиардов долларов вложила Америка в лунную программу «Аполлон» в 60-70 годах XX века. Те миссии, которые осуществлялись после «Аполлона-11», обошлись немного дешевле. Дорога к Марсу будет стоить землянам гораздо дороже. Для того чтобы добраться до Красной планеты, необходимо преодолеть от 52 до 402 млн км. Это связано с особенностью орбиты Марса.

Кроме того, загадочный космос полон различных опасностей. Из-за этого существует необходимость в отправке сразу нескольких космонавтов. При этом полет всего одного человека обойдется примерно в миллиард долларов. В общем, дороговизну полета можно смело включать в список «Проблемы полета на Марс».

Люди, взаимодействующие с космической техникой и устройствами, имеют специальную одежду. Она необходима для защиты от микробов, которые способны жить в космических условиях. Довольно непростым организмом является deinococcus radiodurans, для которого 5000 грей гамма-излучения не представляет опасности. При этом смерть взрослого человека наступает от пяти грей. Для того, чтобы уничтожить данную бактерию, ее необходимо варить около 25 минут.

Средой обитания Deinococcus может быть практически любое место. Трудно предугадать, что произойдет, если бактерия окажется в космосе. Возможно, она станет настоящим бедствием. В связи с этим со стороны критиков идет бурное обсуждение вопросов, касающихся высадки человека на планеты, где может существовать жизнь.

Способ передвижения

Сегодня вся космическая деятельность осуществляется при помощи ракет. Скорость, необходимая для того, чтобы оторваться от Земли, составляет 11,2 км/с (или 40 000 км/ч). Отметим, что скорость пули составляет около 5 000 км/ч.

Летательные устройства, отправляемые в космос, работают на топливе, запасы которого отягощают ракету многократно. Более того, это сопряжено с определенной опасностью. Но в последнее время особую тревогу вызывает принципиальная неэффективность ракетных устройств.

Нам известен лишь один способ полетов – реактивный. Но горение топлива не осуществимо без кислорода. Поэтому самолеты не способны покидать земную атмосферу.

Учеными ведется активный поиск альтернативы горению. Было бы здорово создать антигравитацию!

Клаустрофобия

Как известно, человек – существо социальное. Ему сложно находиться в замкнутом пространстве без всякого общения, как и пребывать долгое время в составе одной команды. Космонавты «Аполлона» могли быть в полете около восьми месяцев. Данная перспектива соблазнительна не для всех.

Очень важно не дать космонавту в период космического путешествия почувствовать себя одиноким. Самый длинный полет осуществил Валерий Поляков, который находился в космосе 438 суток, из которых более половины он прибывал там практически в полном одиночестве. Единственным его собеседником был Центр управления космическими полетами. За весь период Поляков осуществил 25 научных опытов.

Столь длительный период полета космонавта был связан с тем, что он хотел доказать, что можно осуществлять долгие полеты и сохранять при этом нормальную психику. Правда, после высадки Полякова на Землю специалисты отметили изменения в его поведении: космонавт стал более замкнутым и раздражительным.

Думаю, теперь понятно, почему роль психологов столь важна при отправке космонавтов. Специалисты отбирают людей, способных находиться в одной группе долгий период времени. В космос попадают те, кто легко находит общий язык.

Скафандр

Основной задачей скафандра является создание внутри него повышенного давления, так как в условиях космоса легкие человека могут «взорваться», а сам он раздуться… Все скафандры обеспечивают защиту космонавтов от таких неприятностей.

Недостатком современных скафандров является их громоздкость. Как отметили космонавты, особенно неудобно было передвигаться в таком костюме на Луне. Было замечено, что лунные прогулки легче осуществлять при помощи прыжков. Гравитация Марса предполагает более свободное передвижение. Тем не менее на Земле сложно создать похожие условия, чтобы осуществить своеобразные тренировки.

Для того чтобы чувствовать себя комфортно на Марсе, человеку необходим более облегающий скафандр, вес которого составит около двух килограммов. Необходимо также предусмотреть способ охлаждения костюма и решение проблемы дискомфорта, который создает в паху у мужчин и в груди у женщин такая одежда.

Марсианские патогены

Известный писатель-фантаст Герберт Уэллс в своем романе «Война миров» поведал о том, что марсиан победили земные микроорганизмы. Именно с этой проблемой можем столкнуться и мы, попав на Марс.

Существуют предположения о наличии жизни на Красной планете. Самые простые организмы могут в действительности оказаться опасными противниками. Мы сами можем пострадать от этих микробов.

Любой патоген Марса способен убить все живое на нашей планете. В связи с этим космонавты Аполлона-11,12 и 14 пребывали в карантине 21 день, пока не было установлено, что на Луне отсутствует жизнь. Правда, Луна не имеет атмосферы в отличие от Марса. Космонавтов, собирающихся в путешествие на Марс, необходимо по возвращении на Землю поместить в долгосрочный карантин.

Искусственная гравитация

Еще одной проблемой для космонавтов является невесомость. Если принять земную гравитацию за единицу, то, к примеру, сила гравитации Юпитера окажется равной 2,528. В невесомости человек постепенно теряет костную массу, а его мышцы начинают атрофироваться. Поэтому в условиях космического полета астронавтам необходимы длительные тренировки. Пружинистые тренажеры могут помочь в этом, но не в той степени, в которой необходимо. В качестве примера искусственной гравитации можно привести центробежную силу. В летательном аппарате должна присутствовать громадная центрифуга с кольцом вращения. Оснащения кораблей такими аппаратами пока не производилось, хотя подобные планы существуют.

Находясь в космосе 2 месяца, организм космонавтов адаптируется к условиям невесомости, поэтому возвращение на Землю становится для них испытанием: им даже сложно стоять более пяти минут. Представьте себе, какое влияние на человека окажет 8-месячное путешествие на Марс, если костная масса в условиях невесомости уменьшается со скоростью 1% в месяц. Кроме того, на Марсе космонавтам необходимо будет выполнять определенные задачи, привыкая к специфической гравитации. Затем – полет в обратный путь.

Одним из способов создания искусственной гравитации является магнитизм. Но и у него есть свои недостатки, так как к поверхности примагничиваются только ноги, тело же остается вне действия магнита.

Космический корабль

В настоящее время существует достаточное количество космических кораблей, которые могут в целости добраться на Марс. Но нам необходимо учитывать тот факт, что в этих машинах будут находиться живые люди. Летательные аппараты должны быть просторными и комфортными, ведь люди будут пребывать в них длительное время.

Такие корабли еще не созданы, однако вполне возможно,что уже через 10 лет нам удастся их разработать и подготовить к полету.

Огромное количество мелких небесных тел каждый день сталкивается с нашей планетой. Большинство из этих тел не долетают до поверхности Земли благодаря атмосфере. Луна, не обладающая атмосферой, постоянно подвергается нападению всякого «мусора», о чем красноречиво свидетельствует ее поверхность. Не будет защищен от такого нападения и космический корабль, который собирается в далекое путешествие. Можно попытаться защитить летательный аппарат армированными листами, но ракета значительно прибавит в весе.

От солнечного излучения Землю защищают электромагнитное поле и атмосфера. В космосе дело обстоит иначе. Одежда космонавтов снабжена козырьками. Существует постоянная необходимость в защите лица, так как из-за прямых лучей Солнца можно ослепнуть. Программа «Аполлон» разработала блокировку ультрафиолета при помощи алюминия, но космонавты при путешествии на Луну отметили, что часто возникают различные вспышки белого и голубого цветов.

Ученым удалось разгадать, что лучи в космосе – это субатомные частицы (чаще всего протоны), которые движутся со скоростью света. Попадая в корабль, они прошивают обшивку корабля, однако утечек не происходит из-за размера частиц, существенно меньших размера атома.

До изобретения телескопа было известно лишь семь планет: Меркурий, Венера, Марс, Юпитер, Сатурн, Земля и Луна. Их количество многих устраивало. Поэтому, когда в 1610 г. вышла книга Галилея «Звездный вестник», в которой он сообщил, что с помощью своей «зрительной трубы» ему удалось обнаружить еще четыре небесных тела, «никем еще не виданные от начала мира до наших дней» (спутники Юпитера), то это вызвало сенсацию. Сторонники Галилея радовались новым открытиям, противники же объявили ученому непримиримую войну.

Уже через год в Венеции вышла книга «Размышления об астрономии, оптике и физике», в которой автор утверждал, что Галилей заблуждается и число планет должно быть обязательно семь, так как, во-первых, в Ветхом Завете упоминается семисвечник (а это означает семь планет), во-вторых, в голове имеется лишь семь отверстий, в-третьих, существует только семь металлов и, в-четвертых, «спутники не видны для простого глаза, а поэтому и не могут оказывать влияние на Землю, следовательно, они не нужны, а поэтому они не существуют».

Однако подобными аргументами нельзя было остановить развитие науки, и теперь мы точно знаем, что спутники Юпитера существуют и число планет вовсе не равно семи. Вокруг Солнца обращаются девять больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, из которых лишь первые две не обладают спутниками) и свыше трех тысяч малых планет, называемых астероидами.

Спутники обращаются вокруг своих планет под действием их гравитационного поля. Сила тяжести на поверхности каждой из планет может быть найдена по формуле F T = mg, где g = GM/R 2 - ускорение свободного падения на планете. Подставляя в последнюю формулу массу M и радиус R разных планет, можно рассчитать, чему равно ускорение свободного падения g на каждой из них. Результаты этих расчетов (в виде отношения ускорения свободного падения на данной планете к ускорению свободного падения на поверхности Земли) приведены в таблице 7.

Из этой таблицы видно, что наибольшее ускорение свободного падения и, следовательно, наибольшая сила тяжести на Юпитере. Это самая большая планета Солнечной системы; ее радиус в 11 раз, а масса в 318 раз больше, чем у Земли. Слабее всего притяжение на далеком Плутоне. Эта планета меньше Луны: ее радиус всего лишь 1150 км, а масса в 500 раз меньше, чем у Земли!

Еще меньшей массой обладают малые планеты Солнечной системы. 98% этих небесных тел обращаются вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов. Первый и самый большой астероид - Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2*10 21 кг (т. е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5 т (рис. 110).

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно, - рассказал потом Армстронг,- в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра - Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм».

Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.

Первые астронавты находились на Луне 21 ч 36 мин. 21 июля они стартовали с Луны, а 24 июля «Аполлон-11» уже приводнился в Тихом океане. Люди покинули Луну, но на ней осталось пять медалей с изображениями пяти погибших космонавтов. Это Ю. А. Гагарин, В. М. Комаров, В. Гриссом, Э. Уайт и R Чаффи.

1. Перечислите все большие планеты, входящие в состав Солнечной системы. 2. Как называется самая большая из них и самая маленькая? 3. Во сколько раз вес человека на Юпитере превышает вес того же человека на Земле? 4. Во сколько раз сила тяжести на Марсе меньше, чем на Земле? 5. Что вы знаете о Церере? 6. Почему походка астронавтов на Луне напоминала скорее прыжки, чем обычную ходьбу?

На других планетах,почему она возникает, для чего нужна, а также воздействие ее на различные организмы.

Космос

О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники, а значит, по их мнению, они могли быть обитаемы.

С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна. Но уже в начале XX века ученые знали, что сила тяжести на других планетах отличается от нашей. Но почему? Что она собой представляет, отчего возникает и может ли быть губительной? Эти вопросы мы и разберем.

Немного физики

Еще разработал теорию, согласно которой любые два объекта испытывают взаимную силу притяжения. В масштабах космоса и Вселенной в целом подобное явление проявляется очень явственно. Наиболее яркий пример - это наша планета и Луна, которая именно благодаря гравитации и вращается вокруг Земли. Видим проявление гравитации мы и в повседневной жизни, просто привыкли к нему и совсем не обращаем внимание. Это так называемая Именно из-за нее мы не парим в воздухе, а спокойно ходим по земле. Также она способствует удержанию нашей атмосферы от постепенного улетучивания в космос. У нас она составляет условные 1 G, но какая сила тяжести на других планетах?

Марс

Марс наиболее похож по физическим данным на нашу планету. Конечно, жить там проблематично из-за отсутствия воздуха и воды, но он находится в так называемой зоне обитаемости. Правда, весьма условно. На нем нет ужасающей жары как на Венере, многовековых бурь как на Юпитере, и абсолютного холода как на Титане. И ученые последние десятилетия все не оставляют попыток придумать методы его терраформирования, создания пригодных для жизни условий без скафандров. Однако каково такое явление как сила тяжести на Марсе?Она составляет 0,38 g от земной, это примерно в два раза меньше. Это значит, что на красной планете можно скакать и прыгать гораздо выше, чем на Земле, и все тяжести весить будут также значительно меньше. И этого вполне достаточно для удержания не только его нынешней, «хилой» и жидкой атмосферы, но и гораздо более плотной.

Правда, говорить о терраформации пока рано, ведь для начала нужно хотя бы просто высадиться на него и наладить постоянные и надежные полеты. Но все же сила тяжести на Марсе вполне пригодна для обитания будущих поселенцев.

Венера

Еще одной самой близкой к нам планетой (кроме Луны) является Венера. Это мир с чудовищными условиями и невероятно плотной атмосферой, заглянуть за которую долгое время никому не удавалось. Ее наличие, кстати, открыл не кто иной как Михаил Ломоносов.

Атмосфера является причиной парникового эффекта и ужасающей средней температуры на поверхности в 467 градусов по Цельсию! На планете постоянно выпадают осадки из серной кислоты и кипят озера жидкого олова. Такая вот негостеприимная Сила тяжести ее составляет 0,904 G от земной, что почти идентично.

Она также является кандидатом на терраформирование, а впервые ее поверхности достигла советская исследовательская станция 17 августа 1970 года.

Юпитер

Еще одна планета Солнечной системы. Вернее, газовый гигант, состоящий в основном из водорода, который ближе к поверхности из-за чудовищного давления становится жидким. По подсчетам кстати, в его глубинах вполне возможно однажды вспыхнет и у нас будет два солнца. Но если это и произойдет, то, мягко говоря, нескоро, так что беспокоиться не следует. Сила тяжести на Юпитересоставляет 2,535 g относительно земной.

Луна

Как уже говорилось, единственным объектом нашей системы (кроме Земли), где побывали люди, является Луна. Правда, до сих пор не утихают споры, были ли те высадки реальностью или мистификацией. Тем не менее из-за ее малой массы сила тяжести на поверхности составляет всего 0,165 g от земной.

Влияние силы притяжения на живые организмы

Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании.

Сила притяжения сыграет важную роль и при будущей колонизации того же Марса. Согласно законам биологии, если чем-то не пользуешься, то это постепенно атрофируется. Космонавтов с борта МКС на Земле встречают с креслами на колесах, так как в невесомости их мышцы задействованы очень мало, и даже регулярные силовые тренировки не помогают. Так что потомство колонистов на других планетах будет как минимум выше и физически слабее своих предков.

Так что мы разобрались с тем, какая сила тяжести на других планетах.

Предстоящий полет человека на Марс всколыхнул все земное сообщество, став самой обсуждаемой темой за последние полвека. Это и вправду знатное событие в истории земной цивилизации, от которого мы ждём не только колонизации Марса, но также эволюционного витка к «человеку космического масштаба «.

Марсианские города — будущее Четвертой планеты

Отправляясь в путешествие по неизведанным дорогом, надо оценивать и опасность задуманного предприятия. Космос не любит торопливых, ведь хорошо известно — космическое пространство не отличается покладистостью доброго нрава.

Большинство проблем, связанных с большой продолжительностью космического полета (без учета радиационных влияний) уменьшаются или устраняются с помощью искусственной гравитации.
Тогда как неблагоприятное влияние отсутствия гравитации и влияние радиационной обстановки выступают крупнейшими препятствиями на пути освоения Солнечной системы.

Передовые позиции в изучении Марса занимает NASA, активно наступающая на территории Красной планеты. Подобную миссию преследует «Элон Маск и К°», сосредоточив серьёзные мощности на .

Но ведь если кто-то хочет выйти за пределы низкой околоземной орбиты, то Луна представляется более очевидным выбором, поскольку низкие эффекты гравитации могут быть исследованы более тщательно, причём в трёх днях пути от дома.

Наша ближайшая соседка отличное место для тестирования технологий длительных полётов в космосе, не так ли? На Луне можно хорошо «обкатать» и доработать по максимуму конструкции обитаемых баз в условиях чуждой окружающей среды.
И ещё момент — при отработке лунных задач, конструкции космических аппаратов могут найти более совершенные технологии для длительных путешествий. Вы согласны с этим?

Так почему же НАСА не желает вернуться на Луну, отдавая предпочтение человеческому присутствию на Марсе? Почему Space X, так настойчиво игнорирует Луну, устремляясь к Марсу?

Впрочем, мы сейчас не преследуем цели теории заговора, якобы: «там явно что-то знают о катастрофе идущей на Землю», поэтому они хотят уйти на Красную планету. Нам просто интересен вопрос дальних странствий.

Слабое притяжение искусственной гравитации.

Концепция искусственной гравитации вызывается в воображении кадрами гигантских вращающихся модулей космических станций, как например в «Космической Одиссее 2001». Это выглядит самым приемлемым решением в плане длительных космических полётов. Да, это взгляд на вопрос глазами не специалиста, но потенциального путешественника.

Однако, создание даже примитивных конструкций, для получения искусственной силы тяжести, видимо более сложная задача, чем та, что НАСА или Space X готово решить при современном уровне технологий.

Невесомость может быть, как восхитительна, так и коварна. С одной стороны, это позволяет астронавтам совершать невозможные на Земле вещи: например, перемещение крупногабаритного оборудования лёгким движением руки. И, конечно же, представляет серьезный интерес для ученых: начиная от биологии до материальных наук гидродинамики.

Длительное пребывание человека в условиях невесомости изучалось в течение многих десятилетий, и вывод тревожен — серьезные последствия для здоровья космонавтов. Исследователи набрали , от хрупкости костей и потери мышечной массы до утери зрения.

НАСА планирует космические полеты за пределы околоземной орбиты, на Марс, длительностью от шести до девяти месяцев. Там разрабатывают способы по устранению последствий невесомости. Противоборство в основном заключается в составлении ежедневных часовых упражнениях, что является приоритетом для агентства.

Да, специалисты разрабатывают комплекс упражнений для противодействия невесомости, вымывающий кальций из костей. При этом никто не ведет эксперименты с контрмерой — созданием гравитации. А ведь это давно предложено в качестве средства для обеспечения по меньшей мере частичной тяжести, возможно достаточной, для снятия проблем со здоровьем.

Тем не менее, как это ни удивительно, искусственная гравитация является низким приоритетом в НАСА и Space X. Может быть, агентства еще не готовы в полной мере выйти в космос, слишком торопятся, отправляя людей и в без того опасный путь?

Ни один космический корабль марсианской миссии с человеком на борту, не предусматривает вращающихся конструкций в той или иной форме, для создания эффекта гравитации.
Даже гигантский космический аппарат «Межпланетная транспортная система Space X», запланированный перевозить 100 человек разом, не создаёт искусственную силу тяжести, — а ведь в сущности, это уже обитаемая станция в космосе.

Специалисты о проблеме гравитации говорят:

Майкл Барратт, астронавт НАСА и врач, пояснил причины, почему агентство не приняло искусственную гравитацию как меру противодействия невесомости: Мы можем сохранить кости и мышцы, сердечно-сосудистую систему в порядке, сказал он в ходе конференции 2016 года в сентябре в Лонг-Бич, штат Калифорния. Мы не нуждаемся в искусственной гравитации.

Точку зрения астронавта поддержали руководители НАСА: Потеря костной ткани, потеря мышечной массы, работа вестибулярного аппарата, это те виды вещей, чью нормальную работу мы можем контролировать с помощью упражнений, говорит Билл Герстенмайер.

Элон Маск, представляя проект марсианской миссии, не был озабочен проблемой невесомости, отклоняя создание местной гравитации для экипажа кораблей. «Я думаю, что вопросы по существу проблемы решены», считает вдохновитель Space X.
Попутно говоря, что длительных полетов на МКС намного больше, чем время в запланированном путешествии на Марс.

Техническая реализация искусственной гравитации.

Тем не менее, эксперты рассматривали варианты по созданию силы тяжести. Серьёзной проблемой выступает техническая сторона проекта космического корабля, реализующего идею искусственной гравитации, либо посредством вращающегося модуля, либо созданием некой центрифуги.

«Мы рассмотрели много конструкций транспортных средств, пытаясь обеспечить искусственную гравитацию различными способами. На самом деле, это просто не работает, — поясняет Герстенмайер. Это существенная модернизация космического аппарата. Очень большая работа, тогда как есть задача просто попасть на Марс.

Хуже того, полагают специалисты: включение одной секции корабля поддерживающую силу тяжести, может создать новую череду проблем, потому что астронавты должны будут регулярно реадаптироваться между невесомостью и силой тяжести.

В свою очередь, это может спровоцировать синдром адаптации пространства. Астронавтам придётся пересекать зоны с невесомостью и гравитацией по нескольку раз в сутки, что может быть более проблематичным, чем просто пребывание в невесомости.

Баррет отметил, что он и его коллеги имеют технические озабоченности по поводу конструкции космических аппаратов, реализующих искусственную гравитацию. Космонавты боятся искусственной гравитации. Почему? Мы не любим большие движущиеся части.

Проблемы со зрением отмечали у некоторых астронавтов, что может привести к переоценке важности искусственной гравитации. В то же время, причина нарушения зрения не известна, и нет гарантии, что сила тяжести сможет устранить проблему.

Есть много идей о том, почему это происходит. Одним из факторов является повышение уровня углекислого газа, полагают специалисты. Так, уровень углекислого газа на МКС в десять раз выше, чем в нормальных атмосферных условиях на Земле.

— Скорее всего, отсутствие гравитации связано с недостатком технологий, которых для решения вопроса на сегодня попросту нет. Ведь даже Герстенмайер, несколько скептически относясь к необходимости силы тяжести, не исключает этого полностью.
Да, как мы теперь понимаем гравитация на космических кораблях-станциях дело технологий будущего.

Сегодня же, участники марсианской гонки стремятся первыми прибыть на Марс и развернуть там хоть что-то пригодное для жизни.
Человечеству нужен подвиг: ослабленные долгим перелетом, на чужой планете, в непригодной для жизни атмосфере, — колонисты будут строить убежища, и выстраивать жизнь на Красной планете.
Но кто-нибудь, может мне сказать, к чему такая спешка, когда наступление похоже на бегство?

Зачастую очень сложно объяснить словами самые простые вещи или устройство того или иного механизма. Но обычно, понимание приходит достаточно легко, если увидеть их глазами, а еще лучше и покрутить в руках. Но некоторые вещи невидимы для нашего зрения и даже будучи простыми очень сложны для понимания.
Например, что такое электрический ток - есть множество определений, но ни одно из них не описывает его механизм в точности, без двусмысленности и неопределенности.
С другой стороны, электротехника достаточно сильно развитая наука, в которой с помощью математических формул подробно описываются любые электрические процессы.
Так вот почему бы не показать подобные процессы с помощью этих самых формул и компьютерной графики.
Но сегодня рассмотрим действие более простого процесса, чем электричество - силу тяготения. Казалось бы, что там сложного, ведь закон всемирного тяготения изучают в школе, но тем не менее… Математика описывает процесс так, как он проходит в идеальных условиях, в некоем виртуальном пространстве, где нет никаких ограничений.
В жизни обычно все не так и на рассматриваемый процесс непрерывно накладывается множество различных обстоятельств, незаметных или несущественных на первый взгляд.
Знать формулу и понимать её действие - это немножко разные вещи.
Итак, сделаем небольшой шаг к пониманию закона тяготения. Сам закон прост - сила тяготения прямо пропорциональна массам и обратно пропорциональна квадрату расстояния между ними, но сложность заключается в невообразимом количестве взаимодействующих объектов.
Да, будем рассматривать только силу тяготения, так сказать, в полном одиночестве, что конечно неверно, но в данном случае допустимо, так как это просто способ показать невидимое.
И еще, в статье есть код JavaScript, т.е. все рисунки на самом деле нарисованы с помощью Canvas, поэтому целиком статью можно взять .

Отображение возможностей гравитации в Солнечной системе

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения F между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием r , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния - то есть:

где G - гравитационная постоянная, равная примерно 6,67384×10 -11 Н×м 2 ×кг -2 .
Но мне бы хотелось бы видеть картинку изменения силы тяготения по всей солнечной системе, а не между двумя телами. Поэтому массу второго тела m 2 возьмем равной 1, а массу первого тела обозначим просто m . (То есть, представляем объекты в виде материальной точки - размером в один пиксел, а силу притяжения измеряем относительно другого, виртуального объекта, назовем его «пробным телом», с массой 1 килограмм.) При этом формула будет иметь вид:

Теперь, вместо m подставляем массу интересующего тела, а вместо r перебираем все расстояния от 0 до значения орбиты последней планеты и получим изменение силы тяготения в зависимости от расстояния.
При наложении сил от разных объектов выбираем большую по величине.
Далее, выражаем эту силу не в цифрах, а в соответствующим им оттенках цвета. При этом получится наглядная картинка распределения гравитации в солнечной системе. То есть в физическом смысле, оттенок цвета будет соответствовать весу тела массой 1 килограмм в соответствующей точке солнечной системы.
Следует заметить, что:
  • сила тяготения всегда положительна, не имеет отрицательных значений, т.е. масса не может быть отрицательной
  • сила тяготения не может быть равна нулю, т.е. объект либо существует с какой-то массой, либо не существует вообще
  • силу тяготения нельзя ни заэкранировать, ни отразить (как луч света зеркалом).
(собственно, вот и все ограничения, налагаемые физикой на математику в данном вопросе).
Давайте теперь рассмотрим как отобразить величины силы тяготения цветом.

Чтобы показать числа цветом нужно создать массив в котором индекс был бы равен числу, а значением являлось значение цвета в системе RGB.
Вот градиент цвета от белого к красному, затем желтому, зеленому, синему, фиолетовому и черному. Всего получилось 1786 оттенков цвета.

Количество цветов не так уж и велико, их просто не хватит для отображения всего спектра сил тяготения. Ограничимся силами тяготения от максимальной - на поверхности Солнца и минимальной - на орбите Сатурна. То есть, если силу притяжения на поверхности Солнца (270,0 Н) обозначить цветом, находящимся в таблице под индексом 1, то сила притяжения к Солнцу на орбите Сатурна (0,00006 Н) будет обозначена цветом, с индексом далеко за 1700. Так что все равно цветов не хватит для равномерного выражения величин силы тяготения.
Для того чтобы было хорошо видно самые интересные места в отображаемых силах притяжения нужно чтобы величинам силы притяжения меньше 1Н соответствовали большие изменения цвета, а от 1Н и выше, соответствия не так интересны - видно что сила притяжения, скажем Земли, отличается от притяжения Марса или Юпитера, да и ладно. То есть, цвет не будет пропорционален величине силы притяжения, иначе мы «потеряем» самое интересное.
Для приведения значения силы притяжения к индексу таблицы цвета воспользуемся следующей формулой:


Да, это та самая гипербола, известная ещё со средней школы, только предварительно из аргумента извлечен квадратный корень. (Взято чисто «от фонаря», только для того, чтобы уменьшить соотношение между самым большим и самым маленьким значениями силы притяжения.)
Посмотрите как распределятся цвета в зависимости от притяжения Солнца и планет.


Как видите на поверхности Солнца наше пробное тело будет весить около 274Н или 27,4 кГс, так как 1 Н = 0,10197162 кгс = 0,1 кгс. А на Юпитере почти 26Н или 2,6 кгс, на Земле наше пробное тело весит около 9,8Н или 0,98кгс.
В принципе, все эти цифры очень-очень приблизительные. Для нашего случая это не очень важно, нам нужно превратить все эти значения силы притяжения в соответствующие им значения цвета.
Итак, из таблицы видно, что максимальная величина силы притяжения равна 274Н, а минимальная 0,00006Н. То есть разнятся более чем в 4,5 миллиона раз.

Также видно что все планеты получились почти одного цвета. Но это неважно, важно что будет хорошо видно границы притяжения планет, так как силы притяжения малых значений достаточно хорошо изменяются по цвету.
Конечно, точность невелика, но нам и нужно просто получить общее представление о силах гравитации в Солнечной системе.
Теперь «расставим» планеты в места, соответствующие их удалению от Солнца. Для этого к полученному градиенту цвета нужно приделать какое-то подобие шкалы расстояний. Кривизну орбит, я думаю, можно не учитывать.
Но как всегда космические масштабы, в прямом смысле этих слов, не дают увидеть картинку целиком. Смотрим, Сатурн находится приблизительно в 1430 миллионах километров от Солнца, индекс соответствующий цвету его орбиты равен 1738. Т.е. получается в одном пикселе (если брать в этом масштабе один оттенок цвета равен одному пикселу) приблизительно 822,8 тысяч километров. А радиус Земли приблизительно 6371 километр, т.е. диаметр 12742 километра, где-то в 65 раз меньше одного пиксела. Вот и как тут соблюдать пропорции.
Мы пойдем другим путем. Так как нам интересна гравитация околопланетного пространства, то будем брать планеты по отдельности и раскрашивать их и пространство вокруг них цветом, соответствующим гравитационным силам от них самих и Солнца. Например, возьмем Меркурий - радиус планеты 2,4 тыс. км. и приравняем его к кругу диаметром 48 пикселов, т.е. в одном пикселе будет 100 км. Тогда Венера и Земля будут соответственно 121 и 127 пикселов. Вполне удобные размеры.
Итак, делаем картинку размером 600 на 600 пикселов, определяем значение силы притяжения к Солнцу на орбите Меркурия плюс/минус 30000 км (чтобы планета получилась в центре картинки) и закрашиваем фон градиентом оттенков цвета соответствующим этим силам.
При этом, для упрощения задачи, закрашиваем не дугами, соответствующего радиуса, а прямыми, вертикальными линиями. (Грубо говоря, наше «Солнце» будет «квадратным» и всегда будет находиться на левой стороне.)
Для того, чтобы цвет фона не просвечивался сквозь изображение планеты и зоны притяжения к планете, определяем радиус окружности, соответствующей зоне, где притяжение к планете больше притяжения к Солнцу и закрашиваем её в белый цвет.
Затем в центр картинки помещаем круг, соответствующий диаметру Меркурия в масштабе (48 пикселов) и заливаем его цветом, соответствующим силе притяжения к планете на её поверхности.
Далее от планеты закрашиваем градиентом в соответствии с изменением силы притяжения к ней и при этом постоянно сравниваем цвет каждой точки в слое притяжения к Меркурию с точкой с такими же координатами, но в слое притяжения к Солнцу. Когда эти значения становятся равными, делаем этот пиксел черным и дальнейшее закрашивание прекращаем.
Таким образом получим некую форму видимого изменения силы притяжения планеты и Солнца с четкой границей между ними черного цвета.
(Хотелось сделать именно так, но… не получилось, не смог сделать попиксельное сравнение двух слоев изображения.)

По расстоянию 600 пикселов равны 60 тыс. километров (т.е. один пиксел - 100 км).
Сила притяжения к Солнцу на орбите Меркурия и возле него изменяется лишь в небольшом диапазоне, который в нашем случае обозначается одним оттенком цвета.


Итак, Меркурий и сила тяготения в окрестностях планеты.
Сразу следует отметить, что восемь малозаметных лучей это дефекты от рисования окружностей в Canvas. Они не имеют никакого отношения к обсуждаемому вопросу и их следует просто не замечать.
Размеры квадрата 600 на 600 пикселей, т.е. это пространство в 60 тыс. километров. Радиус Меркурия 24 пиксела - 2,4 тыс. км. Радиус зоны притяжения 23,7 тыс. км.
Круг в центре, который почти белого цвета, это сама планета и её цвет соответствует весу нашего килограммового пробного тела на поверхности планеты - около 373 грамм. Тонкая окружность синего цвета показывает границу между поверхностью планеты и зоной, в которой сила тяготения к планете превышает силу тяготения к Солнцу.
Далее цвет постепенно изменяется, становится все более красным (т.е. вес пробного тела уменьшается) и наконец, становится равным цвету, соответствующему силе притяжения к Солнцу в данном месте, т.е. на орбите Меркурия. Граница между зоной где сила притяжения к планете превышает силу притяжения к Солнцу также отмечена синей окружностью.
Как видите, ничего сверхъестественного нет.
Но в жизни несколько другая картина. Например, на этом и всех остальных изображениях, Солнце находится слева, значит на самом деле, область притяжения планеты должна быть немного «сплющена» слева и вытянута справа. А на изображении - окружность.
Конечно, лучшим вариантом было бы попиксельное сравнение области притяжения к Солнцу и области притяжения к планете и выбор (отображение) большей из них. Но на такие подвиги ни я, как автор этой статьи, ни JavaScript не способны. Работа с многомерными массивами не является приоритетной для данного языка, зато его работу можно показать практически в любом браузере, что и решило вопрос применения.
Да и в случае Меркурия, и всех остальных планет земной группы, изменение силы притяжения к Солнцу не так велико, чтобы отобразить его имеющимся набором оттенков цвета. А вот при рассмотрении Юпитера и Сатурна изменение силы притяжения к Солнцу очень даже заметно.

Венера
Собственно, все тоже самое что и у предыдущей планеты, только размер Венеры и её масса значительно больше, а сила притяжения к Солнцу на орбите планеты меньше (цвет более темный, вернее, более красный), а планета большей массы, поэтому цвет диска планеты более светлый.
Для того чтобы на рисунке 600 на 600 пикселов поместилась планета с зоной притяжения пробного тела массой 1 кг уменьшим масштаб в 10 раз. Теперь в одном пикселе 1 тысяча километров.

Земля+Луна
Чтобы показать Землю и Луну изменить масштаб в 10 раз (как в случае с Венерой) недостаточно, нужно увеличить и размер картинки (радиус орбиты Луны 384,467 тыс. км). Картинка получится размером 800 на 800 пикселей. Масштаб - в одном пикселе 1 тысяча километров (хорошо понимаем что ошибочность картинки ещё больше увеличится).


На картинке четко видно что зоны притяжения Луны и Земли разделены зоной притяжения к Солнцу. То есть, Земля и Луна это система из двух равнозначных планет с разной массой.
Марс с Фобосом и Деймосом
Масштаб - в одном пикселе 1 тысяча километров. Т.е. как Венера, и Земля с Луной. Помним, что расстояния пропорциональны, а отображение силы тяжести нелинейно.


Вот, сразу видно коренное отличие Марса со спутниками от Земли с Луной. Если Земля и Луна являются системой двух планет и, несмотря на разные размеры и массы, выступают как равные партнеры, то спутники Марса находятся в зоне силы притяжения Марса.
Сама планета и спутники практически «потерялись». Белая окружность это орбита дальнего спутника - Деймоса. Увеличим в 10 раз масштаб для лучшего просмотра. В одном пикселе 100 километров.


Эти «жуткие» лучи от Canvas достаточно сильно портят картинку.
Размеры Фобоса и Деймоса непропорционально увеличены в 50 раз, иначе их совсем не видно. Цвет поверхностей этих спутников также не логичен. На самом деле сила притяжения на поверхностях этих планетах меньше силы притяжения к Марсу на их орбитах.
То есть, с поверхностей Фобоса и Деймоса притяжением Марса «сдувает» все. Поэтому цвет их поверхностей должен быть равен цвету на их орбитах, но только для того чтобы было лучше видно, диски спутников окрашены в цвет силы притяжения при отсутствии силы притяжения к Марсу.
Эти спутники должны быть просто монолитны. Кроме того, раз уж на поверхности нет силы притяжения, значит они не могли сформироваться в таком виде, то есть и Фобос и Деймос раньше были частями какого-то другого, большего объекта. Ну или, как минимум, находились в другом месте, с меньшей силой притяжения, чем в зоне притяжения Марса.
Например, вот Фобос . Масштаб - в одном пикселе 100 метров.
Поверхность спутника обозначена синей окружностью, а сила притяжения всей массы спутника белой окружностью.
(На самом деле форма небольших небесных тел Фобоса, Деймоса и т.д. далеко не шарообразна)
Цвет кружка в центре соответствует силе притяжения массы спутника. Чем ближе к поверхности планеты, тем меньше сила притяжения.
(Здесь опять допущена неточность. На самом деле белая окружность - это граница, где сила притяжения к планете становится равной силе притяжения к Марсу на орбите Фобоса.
То есть, цвет снаружи от этой белой окружности должен быть таким же как и снаружи от синей окружности, обозначающей поверхность спутника. А вот показанный переход цвета должен быть внутри белой окружности. Но тогда вообще ничего не будет видно.)

Получается как бы рисунок планеты в разрезе.
Целостность планеты определяется только прочностью материала, из которого состоит Фобос. При меньшей прочности у Марса были бы кольца как у Сатурна, от разрушения спутников.


Да и похоже, что распад космических объектов не такое уж исключительное событие. Вот даже космический телескоп «Хаббл» «засёк» подобный случай.

Распад астероида P/2013 R3, который находится на расстоянии более 480 миллионов километров от Солнца (в поясе астероидов, дальше Цереры). Диаметр четырех крупнейших фрагментов астероида достигает 200 метров, их общая масса составляет около 200 тысяч тонн.
А это Деймос . Все тоже, что и у Фобоса. Масштаб - в одном пикселе 100 метров. Только планета поменьше и соответственно полегче, а также находится дальше от Марса и сила притяжения к Марсу здесь поменьше (фон картинки потемнее, т.е. более красный).

Церера

Ну Церера ничего особенного не представляет, за исключением раскраски. Сила притяжения к Солнцу здесь меньше, поэтому цвет соответствующий. Масштаб - в одном пикселе 100 километров (такой же как на картинке с Меркурием).
Маленькая синяя окружность это поверхность Цереры, а большая синяя - граница, где сила притяжения к планете становится равной силе притяжения к Солнцу.

Юпитер
Юпитер очень велик. Вот картинка размером 800 на 800 пикселей. Масштаб - в одном пикселе 100 тысяч километров. Это чтобы показать область притяжения планеты целиком. Сама планета - маленькая точка в центре. Спутники не показаны.
Показана только орбита (внешняя окружность белого цвета) самого дальнего спутника - S/2003 J 2.


У Юпитера 67 спутников. Самые крупные Ио, Европа, Ганимед и Каллисто.
Самый дальний спутник - S/2003 J 2 совершает полный оборот вокруг Юпитера на расстоянии в среднем 29 541 000 км. Его диаметр около 2 км, масса - около 1,5×10 13 кг. Как видите, она выходит далеко за пределы сферы тяготения планеты. Это можно объяснить ошибками в вычислениях (все-таки сделано довольно много усреднений, округлений и отбрасывания некоторых деталей).
Хотя имеется способ вычисления границы гравитационного влияния Юпитера, определямый сферой Хилла , радиус которой определяется формулой


где a jupiter и m jupiter большая полуось эллипса и масса Юпитера, а M sun масса Солнца. Таким образом получается радиус округлённо 52 миллиона км. S/2003 J 2 отдаляется на эксцентрической орбите на расстояние до 36 миллионов км от Юпитера
У Юпитера также имеется система колец из 4 основных компонентов: толстый внутренний тор из частиц, известный как «кольцо-гало»; относительно яркое и тонкое «Главное кольцо»; и два широких и слабых внешних кольца - известных как «паутинные кольца», называющиеся по материалу спутников - которые их и формируют: Амальтеи и Фивы.
Кольцо-гало с внутренним радиусом 92000 и внешним 122500 километров.
Главное кольцо 122500-129000 км.
Паутинное кольцо Амальтеи 129000-182000км.
Паутинное кольцо Фивы 129000-226000 км.
Увеличим картинку в 200 раз, в одном пикселе 500 километров.
Вот кольца Юпитера. Тонкая окружность - поверхность планеты. Далее идут границы колец - внутренняя граница кольца-гало, внешняя граница кольца-гало и она же внутренняя граница главного кольца и т.д.
Маленький кружок в левом верхнем углу - область, где сила притяжения спутника Юпитера Ио становится равной силе притяжения Юпитера на орбите Ио. Сам спутник в этом масштабе просто не виден.


В принципе, большие планеты со спутниками нужно рассматривать отдельно, так как перепад значений сил гравитации очень велик, как велики и размеры области притяжения планеты. Вследствие этого все интересные подробности просто теряются. А рассматривать картинку с радиальным градиентом не имеет особого смысла.
Сатурн
Картинка размером 800 на 800 пикселей. Масштаб - в одном пикселе 100 тысяч километров. Сама планета - маленькая точка в центре. Спутники не показаны.
Четко видно изменение силы притяжения к Солнцу (помним что Солнце слева).


У Сатурна известно 62 спутника. Крупнейшие из них - Мимас, Энцелад, Тефия, Диона, Рея, Титан и Япет.
Самый дальний спутник - Форньот (временное обозначение S/2004 S 8). Также обозначается как Сатурн XLII. Средний радиус спутника около 3 километров, масса 2,6×10 14 кг, большая полуось 25146000 км.
Кольца у планет появляются только на значительном удалении от Солнца. Первая такая планета - Юпитер. Имея массу и размеры большие чем у Сатурна, его кольца не так впечатляют как кольца Сатурна. То есть, размеры и масса планеты для образования колец имеют меньшее значение, чем отдаленность от Солнца.
Зато смотрите дальше, пара колец окружает астероид Харикло (10199 Chariklo) (диаметр астероида около 250 километров), который вращается вокруг Солнца между Сатурном и Ураном.

Википедия о астероиде Харикло
Система колец состоит из плотного внутреннего кольца шириной в 7 км и внешнего кольца шириной в 3 км. Расстояние между кольцами около 9 км. Радиусы колец 396 и 405 км соответственно. Харикло является наименьшим объектом, у которого были открыты кольца.
Тем не менее, сила тяготения имеет к кольцам только опосредованное отношение.
На самом деле, кольца появляются от разрушения спутников, которые состоят из материала недостаточной прочности, т.е. не каменные монолиты типа Фобоса или Деймоса, а смерзшиеся в одно целое куски породы, льда, пыль и прочий космический мусор.
Вот его и утаскивает своим тяготением планета. Подобный спутник, не имеющий собственного притяжения (вернее имеющий силу собственного притяжения меньше силы притяжения к планете на своей орбите) летит по орбите оставляя после себя шлейф разрушенного материала. Так и образуется кольцо. Далее, под действием силы притяжения к планете, этот обломочный материал приближается к планете. То есть, кольцо расширяется.
На каком-то уровне, сила притяжения становится достаточно большой, чтобы скорость падения этих обломков увеличилась, и кольцо исчезает.
Послесловие
Цель публикации статьи - возможно кто-то, обладающий знаниями в программировании, заинтересуется данной темой и сделает более качественную модель гравитационных сил в Солнечной системе (да-да, трехмерную, с анимацией.
А может быть даже сделает так, чтобы орбиты были не фиксированы, а также рассчитывались - это ведь тоже возможно, орбита будет местом, где сила притяжения будет компенсирована центробежной силой.
Получится почти как в жизни, как самая настоящая Солнечная система. (Вот где можно будет создать космическую стрелялку, со всеми тонкостями космической навигации в поясе астероидов. С учетом сил, действующих по реальным физическим законам, а не среди рисованной графики.)
И это будет прекрасный учебник физики, которую будет интересно изучать.
P.S. Автор статьи обычный человек:
не физик,
не астроном,
не программист,
не имеет высшего образования.

Теги:

  • визуализация данных
  • джаваскрипт
  • физика
  • гравитация
Добавить метки

Top