Реферат метеорологические опасные явления. Метеорологические природные явления - ОБЖ: Основы безопасности жизнедеятельности Метеорологические явления определение

Планета Земля окутана многокилометровым слоем атмосферы (воздуха). Воздух находится в постоянном движении. Это движение обусловлено в первую очередь разной температурой воздушных масс, что связанно с неравномерным нагревом поверхности Земли и воды Солнцем, а также разным атмосферным давлением. Перемещение воздушных масс относительно земной и водной поверхности называется ветром. Основными характеристиками ветра являются скорость, направление движения, сила.

Скорость ветра измеряется специальным прибором - анемометром

Направление ветра определяется той частью горизонта, откуда он дует.

Сила ветра определяется в баллах. Балльную систему оценки силы ветра разработал в 19 веке английский адмирал Ф. Бофорт. Она названа его именем.

Таблица 12

Шкала Бофорта

Ветер является непременным участником и главной движущей силой многих ЧС. В зависимости от его скорости различают следующие катастрофические ветры.

Ураган – это чрезвычайно быстрое и сильное, нередко огромной разрушительной силы и значительной продолжительности движение воздуха со скоростью свыше 117 км/час, продолжительностью несколько (3-12 и более) суток.

При ураганах ширина зоны катастрофических разрушений достигает нескольких сотен километров (иногда тысячи км). Ураган длится 9-12 дней, причиняя большое количество жертв и разрушений. Поперечный размер тропического циклона (называемого также тропическим ураганом, тайфуном) несколько сот километров. Давление в ураганах падает намного ниже, чем во внетропическом циклоне. При этом скорость ветра достигает 400-600 км/час. По мере того как поверхностное давление продолжает падать, тропическое возмущение становится ураганом, когда скорость ветра начинает превышать 64 узла. Заметное вращение развивается вокруг центра урагана, так как спиральные полосы выпадения осадков закручиваются вокруг глаза урагана. Самые тяжелые осадки и самые сильные ветры связаны со стеной глаза.

Глаз – область диаметром в 20-50 км, находится в центре урагана, где небо часто ясное, ветры слабые, а давление самое низкое.

Стена глаза – кольцо кучево-дождевых облаков, закрученное вокруг глаза. Самые тяжелые осадки и самые сильные ветры обнаруживаются именно здесь.

Спиральные полосы выпадения осадков – полосы мощных конвективных ливней, направленных к центру циклона.

Разрушительное действие ураганов определяется энергией ветра, т.е. скоростным напором (q ), пропорциональным произведению плотности амосферного воздуха (р ) на квадрат скорости воздушного потока (V )

q = 0,5pV² (кПа)

Смерч (торнадо) атмосферный вихрь, возникающий в грозовых облаках и спускающийся по направлению к суше в виде темного рукава с вертикальной изогнутой осью и воронкообразным расширением в верхней и нижней частях. О происхождении смерчей известно значительно меньше, чем о других СГЯ. О природе смерчей можно судить лишь по визуальным наблюдениям за облачностью и состоянием погоды, по характеру разрушений, связанному с ними, и по анализу аэросиноптических условий, предшествующих этому явлению. Большинство смерчей связано с линиями шквалов или активными холодными фронтами с грозами. Наиболее благоприятные условия для образования смерчей имеются непосредственно на линии приземного фронта, вблизи поверхности Земли (это узкая полоса шириной около 50 км по обе стороны линии фронта). Минимально возможная высота очагов зарождения смерчей лежит в пределах 0,5 – 1.0 км, а максимальная - до 3 км от поверхности Земли. При зарождении смерча на более высоко уровне ему труднее «пробить» нижележащий слой воздуха и достигнуть поверхности Земли. Обычно визуально смерч проявляется, когда из грозового облака как бы отщепляется облачный столб в виде воронки с отростком, напоминающим хобот слона. В сердцевине смерча давления падает очень низко, поэтому смерчи «всасывают» в себя различные, иногда очень тяжелые предметы, которые переносят затем на большие расстояния, люди, оказавшиеся в центре смерча, погибают.

Смерч имеет большую разрушительную силу. Он вырывает с корнем деревья, срывает крыши, иногда разрушает каменные постройки и разбрасывает различные предметы на большие расстояния. Такие катастрофы не остаются незамеченными. Так согласно летописным данным от 1406 г. в Нижнем Новгороде разразилась «великая буря, вихрем подняло в воздух упряжку вместе с лошадью и унесло. На следующий день телегу нашли на другой стороне р. Волги. Она повисла на высоком дереве. Лошадь была мертвой, а человек исчез без вести». Диаметр смерча над сушей бывает порядка 100-1000 м, иногда до 2 км. Видимая высота «хобота» составляет 800-1500 м. Бывают и такие случаи: летом 1940 года в деревне Мещеры Горьковской области в один из дней разразилась гроза, и вместе с дождем на землю посыпались серебряные монеты времен Ивана IV – результат прошедшего смерча.

Следует отметить, что смерч имеет много названий. В зависимости от вида поверхности, над которой он проходит (вода или суша), его именуют торнадо, тромбом или смерчем. Однако все эти явления имеют практически одинаковую природу.

Шквалы и смерчи относятся к локальным явлениям природы. Они возникают внезапно (чаще после полудня), кратковременны (в одном месте наблюдаются обычно в течение нескольких минут) и охватывают сравнительно небольшие площади (от нескольких десятков до сотен квадратных метров). Смерчи и шквалы представляют собой результат действия процессов всех масштабов, который приводит к накоплению больших запасов потенциальной энергии воздушных масс в тропосфере, переходящей за короткий срок в кинетическую энергию движения большой массы воздуха. Такие процессы приводят к гибели людей и значительным материальным разрушениям.

Шквал – кратковременное, неожиданное резкое усиление ветра с постоянным изменением направления его движения в течение короткого времени. Скорость ветра при шквале нередко достигает 25-30 м/с, что намного превышает скорость обычного градиентного ветра. Максимальная повторяемость шквалов отмечается в послеполуденные и вечерние часы суток. Они обычно связаны с грозами, но нередко наблюдаются и как самостоятельные явление. Шквал – это вихрь с горизонтальной осью вращения. Причиной его возникновения является перемещение воздушных масс под влиянием разницы температур. Продолжительность шквала составляет от нескольких секунд до десятков минут. Шквалы часто сопровождаются осадками интенсивностью более 20мм/12 ч и градом.

Выпадение ливневых осадков вызывает интенсивные нисходящие движения. Нисходящий поток воздуха с верхних уровней, на которых ветер слабее, переносит вниз некоторое количество движения и кинетической энергии. Этот воздух, попадая в нижние слои, тормозится из-за трения о земную поверхность и столкновения с теплыми воздушными массами, лежащими перед фронтом. В результате образуется ветровой вал, направленный в сторону движения грозового очага. Шквал присущи многие черты волны, в которой сдвиги ветра наблюдаются как в вертикальном, так и в горизонтальном направлении.

Шторм – продолжительный сильный ветер скоростью 103-120 км/час вызывающий большие волнения на море и разрушения на суше. Шторм является причиной ежегодной гибели десятков морских судов.

Уже при силе в 9 баллов по шкале Бофорта, когда скорость составляет от 20 до 24 м/сек, ветер валит ветхие строения, срывает крыши с домов. Его называют штормом. Если же скорость ветра достигает 32 м/сек, о нём говорят как об урагане. Более подробно проявление шторма как морского гидрологического явления будет рассмотрено в 6 главе.

Буря - это разновидность ураганов и штормов, движение воздуха со скоростью 62-100 км/час (15-20 м/с). Такой ветер способен выдуть верхний слой почвы на десятках и сотнях квадратных километров, переносить по воздуху на большие расстояния миллионы тонн мелкозернистых частиц почвы, а в пустыни песка.

Буря длится от нескольких часов до нескольких суток, ширина фронта при Буре несколько сот километров. Буря причиняет большое количество жертв и разрушений.

Пыльные (песчаные) бури могут засыпать огромные территории пылью, песком, землей. При этом толщина нанесенного слоя составляет десятки сантиметров. Уничтожаются посевы, засыпаются дороги, загрязняются водоемы и атмосфера, ухудшается видимость. Известны случаи гибели во время бури людей и караванов.

Во время бури в воздух поднимается огромное количество снега (снежные бури), что приводит к огромным снегопадам, метелям, снежным заносам. Снежные бури парализуют движение транспорта, нарушают энергоснабжение, привычную жизнедеятельность людей, приводят к трагическим последствиям. Чтобы избежать несчастного случая во время бури, необходимо прекратить движение, оборудовать временное надежное укрытие. С целью предотвращения попадания пыли, песка, снега в глаза, горло, уши необходимо закрыть голову тканью, дышать через нос, использовать марлевую повязку или носовой платок.

«БОРА» – является специфическим ветром для России. Это сильный, холодный, северо-восточный ветер чаще всего дует на черноморском побережье в районе между Новороссийском и Анапой. Скорость ветра может достигать 40 м/с.

В 1975 году ураган «Бора» нанес огромный ущерб г. Новороссийску. Скорость ветра достигала 144 км/ч. Спустя 18 лет такой же ураган выбросил на берег 3 судна, имелись человеческие жертвы

Стихийные бедствия.

Стихийное бедствие - катастрофическое природное явление (или процесс), которое может вызвать многочисленные человеческие жертвы, значительный материальный ущерб и другие тяжелые последствия.

К стихийным бедствиям относятся землетрясения, извержения вулканов, сели, оползни, обвалы, наводнения, засухи, циклоны, ураганы, смерчи, снежные заносы и лавины, длительные проливные дожди, сильные устойчивые морозы, обширные лесные и торфяные пожары. К числу стихийных бедствий относят также эпидемии, эпизоотии, эпифитотии, массовое распространение вредителей лесного и сельского хозяйства.

За последние 20 лет XX века от стихийных бедствий в мире пострадало в общей сложности более 800 млн. человек (свыше 40 млн. человек в год), погибло более 140 тыс. человек, а ежегодный материальный ущерб составил более 100 млрд. долларов.

Наглядными примерами могут служить три стихийных бедствия в 1995 г.

1) Сан-Анджело, Техас, США, 28 мая 1995 года: смерчи и град обрушились на город с 90-тысячным населением; причиненный ущерб оценивается в 120 миллионов американских долларов.

2) Аккра, Гана, 4 июля 1995 года: самые обильные за последние почти 60 лет осадки вызвали сильные наводнения. Около 200 000 жителей потеряли все свое имущество, еще более 500 000 не могли попасть в свои дома, и 22 человека погибли.

3) Кобе, Япония, 17 января 1995 года: землетрясение, длившееся всего 20 секунд, унесло жизни тысяч людей; десятки тысяч получили ранения, и сотни остались без крова.

Чрезвычайные ситуации природного характера можно классифицировать следующим образом:

1. Геофизические опасные явления:

2. Геологические опасные явления:

3. Морские гидрологические опасные явления:

4. Гидрологические опасные явления:

5. Гидрогеологические опасные явления:

6. Природные пожары:

7. Инфекционная заболеваемость людей:

8. Инфекционная заболеваемость сельскохозяйственных животных:

9. Поражение сельскохозяйственных растений болезнями и вредителями.

10. Метеорологические и агрометеорологические опасные явления:

бури (9 - 11 баллов);

ураганы и бури (12 - 15 баллов);

смерчи, торнадо (разновидность смерча в виде части грозового облака);

вертикальные вихри;

крупный град;

сильный дождь (ливень);

сильный снегопад;

сильный гололед;

сильный мороз;

сильная метель;

сильная жара;

сильный туман;

заморозки.

Ураганы и Бури

Бури - это продолжительное по времени движение ветра, как правило, в одном направлении с высокой скоростью. По своему виду они делятся на: снежные, песчаные. А по интенсивности ветра по ширине полосы на: ураганы, тайфуны. Движение и скорость ветра, интенсивность измеряется по шкале Бофорта в баллах.

Ураганы-это ветры силой 12 баллов по шкале Бофорта, т. е. ветры, скорость которых превышает 32,6 м/с (117,3 км/ч).

Бури и ураганы возникают при прохождении глубинных циклонов и представляют собой движение воз­душных масс (ветер) с огромной ско­ростью. При урагане скорость движе­ния воздуха превышает 32,7 м/с (бо­лее 118 км/ч). Проносясь над земной поверхностью, ураган ломает и выры­вает с корнем деревья, срывает крыши и разрушает дома, линии электропере­дач и связи, здания и сооружения, вы­водит из строя различную технику. В результате короткого замыкания электросетей возникают пожары, на­рушается снабжение электроэнергией, прекращается работа объектов, воз­можно возникновение других вредных последствий. Люди могут оказаться под обломками разрушенных зданий и сооружений. Летящие с большой ско­ростью обломки разрушенных зданий и сооружений и другие предметы мо­гут нанести людям тяжелые травмы..

Достигая высшей стадии, ураган проходит в своем развитии 4 этапа: тропический циклон, ба­рическая депрессия, шторм, интенсивный ураган. Ураганы формируются, как правило, над тропи­ческой частью северной Атлантики, зачастую - от западного побережья Африки, и набирают силу, двигаясь к западу. Большое число зарождающихся циклонов развивается подобным образом, но в сред­нем только 3,5 процентов из них достигают стадии тропического шторма. Лишь 1-3 тропических штор­ма, обычно находящихся над Карибским морем и Мексиканским заливом, ежегодно доходят до вос­точного побережья США.

Многие ураганы зарождаются у западного по­бережья Мексики и движутся на северо-восток, уг­рожая прибрежным территориям Техаса.

Ураганы обычно существуют от 1 до 30 дней. Они развиваются над перегретыми территориями океанов и преобразуются в сверхтропические цик­лоны после длительного прохождения над более про­хладными водами северной части Атлантического океана. Попадая на подстилающую поверхность суши, они быстро гаснут.

Условия, необходимые для зарождения урагана, полностью неизвестны. Есть проект «Штормы», пред­назначенный правительством США для разработки способов разрядки ураганов в их источнике. В насто­ящее время этот комплекс проблем глубоко изучает­ся. Известно следующее: интенсивный ураган почти правильно округлый по форме, достигает иногда 800 километров в поперечнике. Внутри трубы сверхтеп­лого тропического воздуха находится так называе­мый «глаз» - пространство чистого голубого неба ди­аметром примерно 30 километров. Его окружает «сте­на глаза» - наиболее опасное и беспокойное место. Именно здесь завихряющийся внутрь, пропитанный влагой воздух устремляется вверх. При этом он вы­зывает конденсацию и выделение опасной скры­той теплоты - источника силы шторма. Поднявшись на километры над уровнем моря, энергия выбрасыва­ется к периферийным слоям. В том месте, где рас­положена стена, восходящие потоки воздуха, смеши­ваясь с конденсацией, образуют сочетание максималь­ной силы ветра и неистовое ускорение.

Облака тянутся вокруг этой стены в форме спи­рали параллельно направлению ветра, придавая, таким образом, урагану характерную форму и ме­няя проливной дождь в центре урагана на тропи­ческий ливень по краям.

Ураганы, как правило, движутся со скоростью 15 километров в час по западному пути и часто набирают скорость, обычно отклоняясь к северно­му полюсу на линию 20-30 градусов северной широты. Но нередко они развиваются по более сложной и непредсказуемой модели. В любом слу­чае ураганы способны вызвать громадные разру­шения и потрясающие людские потери.

До подхода ураганного ветра за­крепляют технику, отдельные строе­ния, в производственных помещениях и жилых домах закрывают двери, ок­на, отключают электросети, газ, воду. Население укрывается в защитных или заглубленных сооружениях.

Современные методы прогноза погоды позволяют за несколь­ко часов и даже суток предупредить население города или це­лого прибрежного района о надвигающемся урагане (шторме), а служба ГО может предоставить необходимую информацию о возможной обстановке и требуемых действиях в сложившихся условиях.

Наиболее надежной защитой населения от ураганов являет­ся использование защитных сооружений (метро, убежищ, под­земных переходов, подвалов зданий и т. п.). При этом в при­брежных районах необходимо учитывать возможное затопление низменных участков и выбирать защитные укрытия на возвы­шенных участках местности.

Ураган на суше разрушает строения, линии связи и электро­передач, повреждает транспортные коммуникации и мосты, ло­мает и вырывает с корнем деревья; при распространении над морем вызывает огромные волны высотой 10-12 м и более, повреждает или даже приводит к гибели суда.

После урагана формирования сов­местно со всем трудоспособным насе­лением объекта проводят спасатель­ные и аварийно-восстановительные ра­боты; спасают людей из заваленных защитных и других сооружений и ока­зывают им помощь, восстанавливают поврежденные здания, линии электро­передач и связи, газо- и водопровода, ремонтируют технику, проводят другие аварийно-восстановительные работы.

В декабре 1944 г. в 300 милях восточнее о. Лусон (Филиппины) корабли 3-го флота США оказались в районе близ центра тайфуна. В результате 3 эсминца затонуло, 28 других кораблей получили повреждения, 146 самолетов на авианосцах и 19 гидросамолетов на линкорах и крейсерах бы­ли разбиты, повреждены и смыты за борт, погибло свыше 800 чело.

От ураганных ветров небывалой силы и гигантских волн, обрушившихся 13 ноября 1970 г. на прибрежные районы Вос­точного Пакистана, пострадало в общей сложности около 10 млн. человек, в том числе примерно 0,5 млн. человек погиб­ли и пропали без вести.

Смерч

Смерч – одно из жестоких, разрушительных явлений природы. По мнению В.В. Кушина, смерч - это не ветер, а скрученный в тонкостенную трубу «хобот» дождя, который вращается вокруг оси со скоростью 300-500 км/ч. За счет центробежных сил внутри трубы создается разряжение, и давление падает до 0,3 атм. Если стенка «хобота» воронки рвется, наткнувшись на препятствие, то внутрь воронки врывается наружный воздух. Перепад давлений 0,5 атм. разгоняет воздушный вторичный поток до скоростей 330 м/с (1200 км/ч) и более, т.е. до сверхзвуковых скоростей. Смерчи образуются при неустойчивом состоянии атмосферы, когда воздух в верхних слоях очень холодный, а в нижних тёплый. Происходит интенсивный воздухообмен, сопровождаемый образованием вихря огромной силы.

Возникают такие вихри в мощных грозовых облаках и часто сопровождаются грозой, дождём, градом. Очевидно, нельзя сказать, что смерчи возникают в каждом грозовом облаке. Как правело, это происходит на гране фронтов – в переходной зоне между тёплой и холодной воздушными массами. Прогнозировать смерчи пока не удаётся, и поэтому их появление бывает неожиданным.

Смерч живёт недолго, так как довольно скоро холодная и тёплая воздушные массы перемешиваются, и таким образом поддерживающая его причина исчезает. Однако даже за непродолжительный период своей жизни смерч может произвести огромные разрушения.

Результаты взаимодействия некоторых атмосферных процессов, которые характеризуются определенными сочетаниями нескольких метеорологических элементов, называются атмосферными явлениями.

К атмосферным явлениям относятся: гроза, метель, пыльная бурая, туман, смерч, полярное сияние и др.

Все метеорологические явления, за которыми осуществляются наблюдение на метеорологических станциях, разделяются на такие группы:

    гидрометеоры , представляют собой сочетание редких и твердых или тех и других вместе частиц воды, взвешенных в воздухе (облака, туманы), которые выпадают в атмосфере (осадки); которые оседают на предметах возле земной поверхности в атмосфере (роса, иней, гололедица, изморозь); или поднятых ветром с поверхности земли (вьюга);

    литометеоры , представляют собой сочетание твердых (не водных) частичек, которые поднимаются ветром с земной поверхности и переносятся на некоторое расстояние или остаются взвешенными в воздухе (пыльная поземка, пылевые бури и др.);

    электрические явления, к которых належат проявления действия атмосферного электричества, которые мы видим или слышим (молния, гром);

    оптические явления в атмосфере, которые возникают в результате отражения, преломление, рассеяние и дифракции солнечного или месячного света (гало, мираж, радуга и др.);

    неклассифицированные (разные) явления в атмосфере, которые тяжело отнести к какому-нибудь виду, указанного выше (шквал, вихрь, смерч).

Вертикальная неоднородность атмосферы. Важнейшие свойства атмосферы

По характеру распределения температуры с высотой атмосфера разделяется на несколько слоев: тропосфера, стратосфера, мезосфера, термосфера, экзосфера.

На рисунке 2.3 представленный ход изменения температуры с удалением от земной поверхности в атмосфере.

А– высота 0 км, t = 15 0 С; В – высота 11 км, t = -56,5 0 С;

C – высота 46 км, t = 1 0 С; D – высота 80 км, t = -88 0 С;

Рисунок 2.3 – Ход температуры в атмосфере

Тропосфера

Мощность тропосферы в наших широтах достигает 10-12 км. В тропосфере сосредоточена основная часть массы атмосферы, поэтому здесь наиболее ярко проявляются разнообразные явления погоды. В этом слое наблюдается непрерывное снижение температуры с высотой. Оно составляет в среднем 6 0 С на каждые 1000 г. Солнечные лучи сильно нагревают земную поверхность и прилегающие нижние слои воздуха.

Тепло, которое идет от земли, поглощается водяным паром, углекислым газом, частицами пыли. Выше воздух более разрежен, водного пара в нем меньшее, а излучаемое снизу тепло уже поглощено нижними слоями – поэтому воздух там холоднее. Отсюда постепенное падение температуры с высотой. Зимой поверхность земли сильно охлаждается. Этому способствует снежный покров, который отражает большую часть солнечных лучей и вместе с тем излучает тепло в более высокие слои атмосферы. Поэтому, воздух возле поверхности земли очень часто холоднее, чем вверху. Температура с высотой немного повышается. Эта так называемая зимняя инверсия (обратный ход температуры). В летнее время земля нагревается солнечными лучами сильно и неравномерно. От наиболее нагретых участков поднимаются воздушные струйки, вихри. На смену воздуху, что поднялся, притекает воздух со стороны менее нагретых участков, в свою очередь, замещаясь воздухом, который опускается сверху. Возникает конвекция, которая вызывает перемешивание атмосферы в вертикальном направлении. Конвекция уничтожает туман и уменьшает запыленность нижнего слоя атмосферы. Таким образом, благодаря вертикальным движениям в тропосфере происходит постоянное перемешивание воздуха, который обеспечивает постоянство его состава на всех высотах.

Тропосфера – это место постоянного формирования облаков, осадков и других явлений природы. Между тропосферой и стратосферой находится тонкий (1 км) переходный пласт, названный тропопаузой.

Стратосфера

Стратосфера простирается до высоты 50-55 км. Стратосфера характеризуется ростом температуры с высотой. До высоты 35 км рост температуры происходит очень медленно, выше 35 км температура растет быстро. Рост температуры воздуха с высотой в стратосфере связан с поглощением солнечной радиации озоном. На верхней границе стратосферы температура резко колеблется в зависимости от времени года и широты места. Разрежение воздуха в стратосфере приводит к тому, что небо там почти черного цвета. В стратосфере всегда хорошая погода. Небо безоблачное и лишь на высоте 25-30 км появляются перламутровые облака. В стратосфере также имеет место интенсивная циркуляция воздуха и наблюдаются вертикальные его перемещения.

Мезосфера

Над стратосферой находится слой мезосферы, приблизительно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля. Вследствие быстрого падения температуры с высотой в мезосфере сильно развитая турбулентность. На высотах, близких к верхней границе мезосферы (75-90 км), наблюдаются серебристые облака. Наиболее вероятно, что они состоят из ледяных кристаллов. На верхней границе мезосферы давление воздуха раз в 200 меньшее, чем у земной поверхности. Таким образом, в тропосфере, стратосфере и мезосфере вместе, до высоты 80 км, находится более чем 99,5 % всей массы атмосферы. На выше расположенные слои приходится незначительное количество воздуха.

Термосфера

Верхняя часть атмосферы, над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосферу, которая простирается от мезосферы к высотам порядка тысячи километров, и экзосферу, которая расположенная над ней. Экзосфера переходит в земную корону.

Температура здесь увеличивается и достигает на высоте 500-600 км + 1600 0 С. Газы здесь сильно разрежены, молекулы редко сталкиваются друг с другом.

Воздух в ионосфере чрезвычайно разрежен. На высотах 300-750 км его средняя плотность порядка 10 -8 -10 -10 г/м 3 . Но и при такой маленькой плотности 1 см 3 воздух на высоте 300 км еще содержит около одного миллиарда молекул или атомов, а на высоте 600 км - свыше 10 миллионов. Это на несколько порядков больше, чем содержание газов в межпланетном пространстве.

Ионосфера, как говорит самое название, характеризуется очень сильной степенью ионизации воздуха - содержание ионов здесь во много раз большее, чем в ниже расположенных слоях, несмотря на большую общую разреженность воздуха. Эти ионы представляют собой в основном заряженные атомы кислорода, заряженные молекулы оксидов азота и свободные электроны.

В ионосфере выделяется несколько слоев или областей с максимальной ионизацией, в особенности на высотах 100-120 км (пласт Е) и 200-400 км (пласт F). Но и в промежутках между этими пластами степень ионизации атмосферы остается очень высокой. Положение ионосферных слоев и концентрация ионов в них все время меняются. Сосредоточение электронов в особо большой концентрации называют электронными облаками.

От степени ионизации зависит электропроводность атмосферы. Поэтому в ионосфере электропроводность воздуха в общем в 10-12 раз большее, чем у земной поверхности. Радиоволны подвергаются в ионосфере поглощению, преломлению и отражению. Волны длиной более 20 м вообще не могут пройти сквозь ионосферу: они отражаются электронными облаками в нижней части ионосферы (на высотах 70-80 км). Средние и короткие волны отражаются выше расположенными ионосферными слоями.

Именно вследствие отражения от ионосферы возможная далекая связь на коротких волнах. Многоразовое отражение от ионосферы и земной поверхности позволяет коротким волнам зигзагообразно распространяться на большие расстояния, огибая поверхность Земного шара. Так как положение и концентрация ионосферных слоев непрерывно меняются, меняются и условия поглощения, отражения и распространение радиоволн. Поэтому для надежной радиосвязи необходимо непрерывное изучение состояния ионосферы. Наблюдение над распространением радиоволн и есть средством для такого исследования.

В ионосфере наблюдаются полярные сияния и близкое к ним по природе свечение ночного неба - постоянная люминесценция атмосферного воздуха, а также резкие колебания магнитного поля - ионосферные магнитные буры.

Ионизация в ионосфере проходит под действием ультрафиолетовой радиации Солнца. Ее поглощение молекулами атмосферных газов приводит к возникновению заряженных атомов и свободных электронов. Колебание магнитного поля в ионосфере и полярные сияния зависят от колебаний солнечной активности. С изменениями солнечной активности связаны изменения в потоке корпускулярной радиации, которая идет от Солнца в земную атмосферу. А именно корпускулярная радиация имеет основное значение для указанных ионосферных явлений. Температура в ионосфере растет с высотой до очень больших значений. На высотах близко 800 км она достигает 1000°.

Говоря о высоких температурах ионосферы, имеют в виду то, что частицы атмосферных газов двигаются там с очень большими скоростями. Однако плотность воздуха в ионосфере так мала, что тело, которое находится в ионосфере, например спутник, не будет нагреваться путем теплообмена с воздухом. Температурный режим спутника будет зависеть от непосредственного поглощения им солнечной радиации и от отдачи его собственного излучения в окружающее пространство.

Экзосфера

Атмосферные слои выше 800-1000 км выделяются по названию экзосферы (внешней атмосферы). Скорости движения частиц газов, в особенности легких, здесь очень большие, а вследствие чрезвычайной разреженности воздуха на этих высотах частицы могут облетать Землю по эллиптическим орбитам, не сталкиваясь между собою. Отдельные частицы могут при этом иметь скорости, достаточные для того, чтобы преодолеть силу тяжести. Для незаряженных частиц критической скоростью будет 11,2 км/с. Такие в особенности быстрые частицы могут, двигаясь по гиперболическим траекториям, вылетать из атмосферы в мировое пространство, "выскальзывать", рассеиваться. Поэтому экзосферу называют еще сферой рассеяния. Выскальзыванию поддаются преимущественно атомы водорода.

Недавно предполагалось, что экзосфера, а с ней вообще земная атмосфера, заканчивается на высотах порядка 2000-3000 км. Но наблюдения с помощью ракет и спутников показали, что водород, который выскальзывает из экзосферы, образовывает вокруг Земли так называемую земную корону, которая простирается более чем до 20000 км. Конечно, плотность газа в земной короне ничтожно маленькая.

С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и в околоземном космическом пространстве радиационного пояса Земли, который начинается на высоте нескольких сотен километров и простирается на десятки тысяч километров от земной поверхности. Этот пояс состоит из электрически заряженных частиц - протонов и электронов, захваченных магнитным полем Земли, которые двигаются с очень большими скоростями. Радиационный пояс постоянно теряет частицы в земной атмосфере и пополняется потоками солнечной корпускулярной радиации.

По составу атмосфера делится на гомосферу и гетеросферу.

Гомосфера простирается от поверхности земли до высоты около 100 км. В этом слое процентное содержание основных газов не изменяется с высотой. Остается постоянным и молекулярный вес воздух.

Гетеросфера располагается выше 100 км. Здесь кислород и азот находятся в атомарном состоянии. Молекулярный вес воздуха с высотой уменьшается.

Имеет ли атмосфера верхнюю границу? Атмосфера не имеет границы, а, постепенно разрежаясь, переходит в межпланетное пространство.

Довольно легко устать от одной и той же погоды, стоящей на дворе изо дня в день, тем не менее, резкие перемены могут по-настоящему шокировать людей. Ниже представлены одни из самых редких метеорологических явлений: некоторые из них прекрасны, другие смертельно опасны, но все они без исключения внушают людям благоговение.

10. Разноцветный снег

Морозным утром 2010 года жители Ставрополя, Россия проснулись и увидели разноцветный снег, выстилавший их улицы. Люди были ошеломлены, когда они увидели светло-фиолетовые и коричневые снежные сугробы. Другие люди, которые слышали историю, возможно, думали, что это была выдумка, однако учёные, исследовавшие этот вопрос, подтвердили, что это был снегопад, состоявший из снега множества цветов.

Он не был токсичен, но эксперты предупредили, что глотать снег любого цвета не стоит, так как он, скорее всего, был загрязнён пылью, перенесённой из Африки. Пыль достигла головокружительных высот в верхних слоях атмосферы, где она смешалась с обычными снежными облаками. Это взаимодействие послужило причиной выпадения красиво окрашенного снега. Это был не первый раз, когда произошло нечто подобное - в 1912 году чёрный снег выпал на Аляске и в Канаде. Чёрный цвет был обусловлен вулканическим пеплом и горными породами, которые также смешались со снежными облаками.

9. «Деречо» (Derecho)


В 2012 году огромный и сильный шторм, состоявший из нескольких гроз и сильных ветров, оставил за собой след разрушения по всему Среднему Западу и среднеатлантическому региону. Этот ужасающий тип шторма называется деречо, а в данном случае уровень шторма был повышен до «супер деречо» из-за его силы.

Основной причиной супершторма была сильная жара, стоявшая в этой области в сочетании с пульсацией в струйном течении. Штат Вирджиния перенёс массовое отключение электроэнергии, кабели лопались, как веточки, грузовики переворачивались на бок, будто они были сделаны из картона. Погибло 13 человек.

Деречо встречаются очень редко в среднеатлантическом регионе, случаясь только раз в четыре года или около того. Ещё один чрезвычайно разрушительный деречо случился в США в 2009 году. Шторм покрыл расстояние в 1600 километров в течение одного дня, оставив позади несколько убитых и ещё больше тех, кто получил ранения. Во время этого шторма на землю обрушились 45 ужасных торнадо.


8. Снежная гроза


Жители восточного побережья США наблюдали обычную метель в 2011 году, когда они вдруг стали свидетелями вспышек молний и раскатов грома, которые смешались со снегом. Снежная гроза происходила прямо перед их глазами.

Снежная гроза имитирует внутренние процессы обычной грозы путем формирования посредством восходящего движения влажного воздуха. Это сочетание воздуха с низкой влажностью и более высоко расположенного более холодного воздуха вызывает молнии и грозу. Именно поэтому снеговые грозы происходят настолько редко, учитывая, что в нижнем слое обычно не бывает тёплой температуры во время выпадения снега.

Метеорологи отметили, что появление снеговой грозы, скорее всего, означает, что будут выпадать обильные снегопады. Исследователи обнаружили, что существует более чем 80-процентный шанс того, что снег глубиной как минимум 15 сантиметров выпадет в радиусе 112 километров от вспышки молнии, случающейся во время метели.

7. Красочная солнечная буря


Мы все знакомы с явлением северного сияния, которое обычно появляется в виде голубых и зелёных завихрений в небе. Тем не менее, иногда солнечные бури настолько сильны, что они вызывают появление калейдоскопа цветов и их даже становится возможным увидеть в тех регионах, где люди никогда не видели их раньше. В 2012 году одна из этих интенсивных солнечных бурь создала особенно красивое сияние над кратерным озером в штате Орегон. Учёные предположили, что два облака светящихся частиц запущены в сторону Земли солнечными пятнами, крупнее нашей планеты по размеру. Интенсивность полярных сияний позволила людям увидеть их на огромном расстоянии, вплоть до штатов Мэриленд и Висконсин. Кроме того, они также показали красивое шоу в Канаде по пути вниз от Арктики.

6. Двойной торнадо


Торнадо происходят каждый год во всём мире, однако двойные торнадо происходят лишь раз в 10 - 20 лет. Когда они появляются, они вызывают огромные разрушения. Город Пилгера (Pilger) в штате Небраска знает не понаслышке, какой огромный ущерб могут нанести эти торнадо в течение нескольких минут. Двойное торнадо, обрушившееся на город в 2014 году, унесло жизнь ребёнка и нанесло травмы девятнадцати другим людям.

Существуют некоторые разногласия относительно того, как именно образуются двойные торнадо. Некоторые эксперты считают, что процесс окклюзии способствует формированию этих вихрей. Окклюзия происходит, когда один торнадо оказывается в окружении холодного влажного воздуха. Когда этот «завернутый» торнадо начинает ослабевать, это может привести к образованию второго торнадо. Это обычно происходит, когда в исходном шторме присутствует много энергии.

Другие утверждают, что штормы с множественными вихрями или даже отдельные суперселлы являются причиной образования двойных торнадо. Какой бы ни была причина, все эксперты сходятся во мнении, что двойные торнадо смертельно опасны и в случае этого явления людям необходимо срочно искать место для укрытия.

5. Вихревой шквал (Gustnado)


Вихревой шквал это термин, используемый для обозначения краткосрочного торнадо, который абсолютно изолирован от основной грозы, из которой обычно появляются стандартные торнадо. В 2012 сильная гроза породила вихревой шквал из-за ветра высокой скорости на юго-востоке штата Висконсин. Это редкое явление ошеломило местное пожарное отделение, которое бросилось на помощь людям, оказавшимся в буре.

Вихревой шквал не настолько сильный, как торнадо и образуется, когда ливень увлекает вниз холодный воздух изнутри бури. Холодный воздух, который толкается вниз дождём, сильно ударяется о землю, а затем извергает порыв ветра, который, в свою очередь, становится вихревым шквалом. Сильный вихревой шквал обычно образуется, когда множество холодных порывов, сформированных на земле, смешиваются с горячим воздухом. Вихревые шквалы продолжаются лишь несколько минут, тем не менее, они вполне способны нанести серьёзные повреждения на окружающей их территории.

4. Инверсия


Сразу после Дня благодарения в 2013 году посетители Гранд-Каньона заметили что-то странное - каньон быстро наполнялся густым туманом. Туристы остались в восторге, когда туман накатил на парк и в конечном итоге сформировал то, что выглядело как водопад облаков. Эта аномалия погоды известна как инверсия.

Инверсия обусловлена холодным воздухом, который опускается близко к земле, в то время как более теплый воздух движется над ним. Инверсия на Гранд-Каньоне началась, когда шторм прошёл через эту территорию как раз перед праздником, в результате чего земля замёрзла. Когда в область переместился более теплый воздух, образовалось красивое явление инверсии. Рейнджеры в парке подтвердили, что инверсии более мелкого размера встречаются здесь довольно часто, однако более крупные, которые заполняют весь каньон, случаются лишь раз в десять лет или около того. Эта инверсия длилась целый день и туман рассеялся только когда начало темнеть.

3. Солнечное цунами


2013 был хорошим годом для редких метеорологических явлений. В середине года два спутника зарегистрировали, как что-то необычное происходило на поверхности Солнца. Цунами катилось по его поверхности в результате реакции на выброс материи в пространство.

Впрыск и последующее солнечное цунами дало учёным более глубокое понимание динамики цунами, а также того, как они происходят на Земле. Японский спутник Хиндое (Hindoe) и Обсерватория солнечной динамики (Solar Dynamics Observatory) играют важную роль в исследовании событий, которые происходят на Солнце. Они оба изучают его ультрафиолетовое излучение, чтобы установить точные условия на поверхности.

{banner_ads_inline}


Хиндое также собрал достаточно данных, чтобы специалисты смогли, наконец, выяснить, почему солнечная корона на тысячи градусов горячее его поверхности. Именно в течение этого исследования учёные узнали об ударных волнах, следующих за выбросом материи. Этот инцидент был очень похож на движение цунами на Земле после того, как произошло землетрясение. Ударные волны очень редки, из-за чего солнечные цунами также являются редким явлением.

2. Суперрефракция


Также в 2013 году люди, живущие на севере штата Огайо, проснулись однажды утром и были ошеломлены, обнаружив, что они могли видеть всё вплоть до канадской береговой линии. Это абсолютно невозможно в нормальных условиях из-за того, как изогнута Земля. Тем не менее, местные жители могли видеть всю территорию до Канады из-за редкого природного явления, известного как суперрефракции, в ходе которой лучи света сгибаются вниз к поверхности Земли. Лучи сгибаются таким образом из-за изменений в плотности воздуха. В ходе этого изгиба света далеко расположенные объекты можно с лёгкостью увидеть, потому что они отражаются в лучах света. Свет от солнца согнулся вниз настолько сильно над озером Эри (Lake Erie), что рефракция сделала канадскую береговую линию видимой на расстоянии более чем в 80 километров.

1. Атмосферное блокирование

Атмосферное блокирование вполне возможно является самым редким метеорологическим явлением на Земле, что очень хорошо, так как оно также является одним из самых опасных. Оно происходит, когда система высокого давления застревает и не может перейти из одного места в другое. В зависимости от типа системы это может либо привести к наводнению или к чрезвычайно жаркой и сухой погоде.

Примером атмосферного блокирования является сильная жара в Европе 2003 года, которая убила 70 000 человек. Антициклон, который застрял в этом случае, был очень мощным и заблокировал любые фронты сброса давления. В 2010 году 15 000 россиян погибли в результате жары, вызванной другим атмосферным блокированием. А в 2004 году атмосферное блокирование на Аляске вызвало такие высокие температуры, что ледники начали таять и в этом районе начались крупные лесные пожары. Однако это не всегда означает гибель и мрак - в ходе другого атмосферного блокирования в 2004 году положительные эффекты были отмечены в штате Миссури, так как температуры оставались приятными и в конечном итоге дали фантастические урожаи.



Выделяются два основных типа осадков. Первый – это осадки, выпадающие на обширной территории в результате циклонической деятельности, их можно подразделить на фронтальные и нефронтальные. Фронтальные формируются, когда теплый воздух поднимается над холодным, нефронтальные – когда происходит горизонтальная конвергенция и поднимающийся воздух перетекает в область низкого давления. Осадки второго типа выпадают на меньшей территории и представляют собой более интенсивные грозовые ливни , при которых более теплый воздух нижних слоев быстро выносится вверх сильными конвективными течениями. Осадки конвективного типа могут быть одной из стадий циклона , и оба типа осадков могут усиливаться за счет дополнительного подъема воздуха над высокими формами рельефа.

При определенных условиях из облаков выпадают осадки, т.е. капли или кристаллы достаточно крупных размеров, которые не могут удерживаться в атмосфере во взвешенном состоянии. Наиболее типичны и важны дождь и снег, однако есть еще несколько видов осадков, отличающихся от типичных форм дождя и снега. В зависимости от физических условий образования (по генетическому признаку) осадки подразделяют на три вида. Из облаков упорядоченного восходящего движения (слоисто-дождевых и высокослоистых), связанных с фронтами, выпадают обложные осадки. Это осадки средней интенсивности. Они выпадают сразу на больших площадях (порядка сотен тысяч квадратных километров), распространяются сравнительно равномерно и продолжаются достаточно длительное время (порядка десятков часов). В области, захваченной фронтальной облачной системой, осадки отмечаются на всех или на большинстве станций и суммы осадков на отдельных станциях не слишком сильно отличаются одна от другой. Наибольший процент в общем количестве осадков в умеренных широтах составляют именно обложные осадки.

Классификация облаков.

  1. Перистые – Cirrus (Ci);
  2. Перисто-кучевые – Cirrocumulus (Cc);
  3. Перисто-слоистые – Cirrostratus (Cs);
  4. Высококучевые – Altocumulus (Ac);
  5. Высокослоистые – Altostratus (As);
  6. Слоисто-дождевые – Nimbostratus (Ns);
  7. Слоисто-кучевые – Stratocumulus (Sc);
  8. Слоистые – Stratus (St);
  9. Кучевые – Cumulus (Cu);
  10. Кучево-дождевые – Cumulonimbus (Cb).

Из кучево-дождевых облаков, связанных с конвекцией, выпадают интенсивные, но недолгие ливневые осадки. Сразу же после начала они могут иметь большую интенсивность, но вскоре быстро обрываются. Их сравнительно небольшая продолжительность объясняется тем, что они связаны с отдельными облаками или узкими зонами облаков. В холодной воздушной массе, движущейся над теплой земной поверхностью, ливневый дождь в каждом конкретном пункте иногда продолжается всего несколько минут. При местной конвекции летом над сушей, когда атмосфера неустойчива в течение всего дня и непрерывно образуются кучево-дождевые облака или при прохождении фронтов ливни иногда продолжаются часами. По наблюдениям в США, средняя площадь, одновременно захватываемая одним и тем же ливневым дождем, около 20 квадратных километров. Интенсивность ливневых осадков сильно колеблется. Даже во время одного дождя количество осадков, выпавшее на расстоянии всего 1–2 км, может различаться на 50 мм. Ливневые осадки являются основным видом осадков в низких тропических и экваториальных зонах. Кроме обложных и ливневых осадков различают еще осадки моросящие. Это внутримассовые осадки, выпадающие из слоистых и слоисто-кучевых облаков, типичных для теплых или местных устойчивых воздушных масс. Вертикальная протяженность этих облаков невелика, поэтому в теплое время года осадки могут выпадать из них только в результате взаимного слияния капель. Выпадающие жидкие осадки – морось – состоят из очень мелких капелек. Зимой при низких температурах такие облака могут содержать кристаллы, тогда вместо мороси из них выпадают мелкие снежинки и так называемые снежные зерна. Как правило, моросящие осадки не дают существенных суточных количеств влаги. Зимой они заметно не увеличивают снежный покров. Только в особых условиях, например, в горах, морось может быть более интенсивной и обильной.

Форма осадков.

По форме различают следующие виды осадков.

Дождь

Дождь – жидкие осадки, состоящие из капель диаметром 0,5–6 мм. Капли более значительных размеров при падении разбиваются на части. В ливневых дождях величина капель больше, чем в обложных, особенно в начале дождя. При отрицательных температурах иногда могут выпадать переохлажденные капли. Соприкасаясь с земной поверхностью, они замерзают и покрывают ее ледяной коркой.

Морось

Морось – жидкие осадки, состоящие из капель диаметром порядка 0,5–0,05 мм с очень малой скоростью падения. Они легко переносятся ветром в горизонтальном направлении.

Снег

Снег твердые осадки, состоящие из сложных ледяных кристаллов (снежинок). Формы их разнообразны и зависят от условий образования. Основная форма снежных кристаллов – шестилучевая звезда. Звезды получаются из шестиугольных пластинок, потому что сублимация водяного пара наиболее быстро происходит на углах пластинок, где и нарастают лучи. На этих лучах, в свою очередь, создаются разветвления. Диаметры выпадающих снежинок могут быть очень различными (в среднем, порядка нескольких миллиметров). Снежинки при падении часто сливаются в крупные хлопья. При температурах, близких к нулю и выше нуля, выпадает мокрый снег или снег с дождем. Для него характерны крупные хлопья. Из слоисто-дождевых и кучево-дождевых облаков при отрицательных температурах выпадает еще крупа, снежная и ледяная, – осадки, состоящие из ледяных и сильно озерненных снежинок диаметром более 1 мм. Чаще всего крупа наблюдается при температурах, близких к нулю, особенно осенью и весной. Снежная крупа имеет снегоподобное строение: крупинки легко сжимаются пальцами. Ядрышки ледяной крупы имеют оледеневшую поверхность. Раздавить их трудно, при падении на землю они подскакивают. Из слоистых облаков зимой вместо мороси выпадают снежные зерна – маленькие крупинки диаметром менее 1 мм, напоминающие манную крупу. Зимой при низких температурах из облаков нижнего или среднего яруса иногда выпадают снежные иглы – осадки, состоящие из ледяных кристаллов в виде шестиугольных призм и пластин без разветвлений. При значительных морозах такие кристаллы могут возникать в воздухе вблизи земной поверхности. Они особенно хорошо видны в солнечный день, когда сверкают своими гранями, отражая солнечные лучи. Из подобных ледяных игл состоят облака верхнего яруса. Особый характер имеет ледяной дождь – осадки, состоящие из прозрачных ледяных шариков (замерзших в воздухе капель дождя) диаметром 1–3 мм. Их выпадение ясно говорит о наличии инверсии температуры. Где-то в атмосфере есть слой воздуха с положительной температурой, в котором выпадающие сверху кристаллы растаяли и превратились в капли, а под ним – слой с отрицательной температурой, где капли замерзли. Летом в достаточно жаркую погоду из кучево-дождевых облаков иногда выпадает град.

Град

Град – осадки в виде кусочков льда шарообразной или неправильной формы (градин) диаметром от нескольких миллиметров и более. Масса градин в отдельных случаях превышает 300 г. Градины состоят из белого матового ядра и далее из последовательных прозрачных и мутных слоев льда. Град выпадает из кучево-дождевых облаков при грозах и, как правило, вместе с ливневым дождем. Вид и размеры градин говорят о том, что они в течение своей «жизни» многократно увлекаются то вверх, то вниз сильными токами конвекции. В результате столкновения с переохлажденными каплями градины наращивают свои размеры.

В нисходящих токах градины опускаются в слои с положительными температурами, где обтаивают сверху затем в восходящих потоках они снова поднимаются вверх и замерзают с поверхности и т.д. Для образования градин необходима большая водность облаков, поэтому град выпадает только в теплое время года при высоких температурах у земной поверхности. Чаще всего град выпадает в умеренных широтах, а с наибольшей интенсивностью – в тропиках. В полярных широтах град не наблюдается. Отмечены случаи, когда град долго лежал на земле слоем в несколько десятков сантиметров. Град часто вредит посевам и уничтожает их (градобития). В отдельных случаях от него могут пострадать животные и даже люди.

Гроза

Гроза – электрическое атмосферное явление, при котором в мощных кучево-дождевых облаках или между облаками и земной поверхностью возникают многократные электрические разряды (молнии), сопровождающиеся громом. Грозам обычно сопутствуют шквалистые ветры, ливневые осадки, нередко с градом .

Средняя продолжительность ливневого дождя – 25 минут, в основном, сильный дождь продолжается от 5–15 мин., затем его интенсивность ослабевает, причем гораздо медленнее, чем нарастает в начале его выпадения.

По условиям развития грозы разделяются: на внутримассовые и фронтальные .

Внутримассовые грозы над материком возникают в результате местного прогревания воздуха от земной поверхности, что приводит к развитию в нём восходящих токов местной конвекции и к образованию мощных кучево-дождевых облаков. Поэтому внутримассовые грозы над сушей развиваются преимущественно в послеполуденные часы. Над морями наиболее благоприятные условия для развития конвекции наблюдаются в ночные часы, и максимум в суточном ходе приходится на 4–5 часов утра.

Фронтальные грозы возникают на фронтальных разделах, т.е. на границах между теплыми и холодными воздушными массами и не имеют регулярного суточного хода. Над материками умеренного пояса они наиболее часты и интенсивны летом, в засушливых районах – весной и осенью. Зимние грозы возникают в исключительных случаях – при прохождении особенно резких холодных фронтов.

Грозы на Земле распределены неравномерно: в Арктике они возникают раз в несколько лет, в умеренном поясе в каждом отдельном пункте бывает несколько десятков дней с грозами. Тропики и экваториальная область являются самыми грозоопасными районами Земли и получили название «пояс вечных гроз», у них свой «полюс» – район Бютензорга на острове Ява: здесь грозы буйствуют 322 дня в году. В пустыне Сахара гроз вообще почти не бывает.

Гром

Гром – звуковое явление в атмосфере, сопровождающее молнию. Гром вызывается колебаниями воздуха в результате быстрого нагревания и расширения воздуха на пути молнии. Гром имеет характер длительных раскатов и обычно слышен на расстоянии не более 15-20 км. Раскаты грома объясняются отражением звука от облаков, а также тем, что молния имеет большую длину, и звук от разных ее участков доходит до уха наблюдателя не одновременно.

Молния

Молния – гигантский электрический искровой разряд в атмосфере между облаками или между облаками и земной поверхностью длиной несколько километров, диаметром десятки сантиметров и длительностью десятые доли секунды (линейная молния). Изредка наблюдаются шаровые молнии. Обычно молния –это яркая вспышка света, она сопровождается громом и содержит несколько повторных разрядов, длительность многократной молнии иногда превышает 1 с.

Эдвард Кононович


Top