Самые необычные виды облаков. Как образуются облака? Что такое облако в атмосфере

В зависимости от высоты расположения нижней границы и внешнего вида все облака подразделяются на четыре группы - морфологическая классификация :

I. Облака верхнего яруса - нижняя граница более 6 км:

Перистые, Cirrus (Ci) - , ;

Перисто - слоистые, Cirrostratus (Cs) - , ;

Перисто - кучевые, Cirrocumulus (Cс) - .

II. Облака среднего яруса - нижняя граница от 2 до 6 км:

Высоко - слоистые, Altostratus (As) - (плотные), (тонкие);

Высоко - кучевые, Altocumulus (Ac) - (тонкие),

(распространяющиеся по небу), (плотные),

(чечевицеобразные), (башенкообразные или хлопьевидные);

III. Облака нижнего яруса - нижняя граница менее 2 км:

Слоисто - дождевые, Nimbostratus (Ns) - ;

Разорвано - дождевые, Fractonimbus (Fr nb) - ;

Слоисто - кучевые, Stratocumulus (Sc) - ;

Слоистые, Stratus (St) -;

Разорвано - слоистые, Fractostratus (Fr st) - .

IV. Облака вертикального развития - нижняя граница менее 2 км, верхняя граница - в среднем или верхнем ярусе:

Кучевые, Cumulus (Cu) - ;

Мощно - кучевые, Cumulus congestus (Cu cong) - ;

Кучево - дождевые, Cumulonimbus (Cb) - (лысые),

(с наковальней).

По условиям образования - генетическая классификация - облака подразделяются на три группы:

I. Кучевообразные облака

Причина образования - различные виды конвекции. К ним относятся: кучевые, мощно - кучевые, кучево - дождевые, высоко - кучевые башенкообразные или хлопьевидные и перисто - кучевые облака.

Кучевые облака - это небольшие облачные массы белого цвета, разбросанные по небу в виде куч. Нижнее основание облаков плоское на высоте 800…1500 м, вершина - выпуклая на высоте 2…3 км. Состоят из капель воды, осадков не дают. Над континентом кучевые облака образуются преимущественно в тёплое время года. Обычно они появляются в 10…12 часов, в 14…15 достигают максимального развития и к вечеру размываются. Малоразвитые по вертикали, плоские кучевые облака называются «облаками хорошей погоды». Полет под облаками и в облаках сопровождается слабой болтанкой, т.к. скорость восходящих потоков 2…5 м/с. Облака располагаются ниже нулевой изотермы, поэтому обледенение в них не наблюдается.

Мощно - кучевые облака - образуются из кучевых облаков. При большой влажности воздуха (б > 10 г./м) и благоприятных условиях для развития конвекции кучевые облака развиваются по вертикали, переходят через нулевую изотерму и становятся мощно - кучевыми. Нижнее основание облаков плоское, слегка сероватое или синеватое на высоте 600…1000 м, вершина - куполообразная, белого цвета на высоте 4…6 км. Мощно - кучевые облака могут располагаться в виде отдельных редких облаков или в виде значительного скопления, закрывающего почти все небо. Облака капельно - жидкие, но выше изотермы 0°С капли воды находятся в переохлажденном состоянии. Осадки из мощно - кучевых облаков не выпадают. В облаках преобладают восходящие потоки, скорость которых достигает 10…15 м/с. Полёты внутри мощно - кучевых облаков запрещены руководящими документами из - за сильной болтанки по всему облаку и интенсивного обледенения выше нулевой изотермы.

Кучево-дождевые облака - огромные горообразные облачные массы с тёмными основаниями и ярко - белыми вершинами, которые, как правило, имеют волокнистое строение. По вертикали кучево - дождевые облака могут развиваться до тропопаузы, а иногда пробивают тропопаузу и вклиниваются в нижнюю стратосферу. Образуются из мощно - кучевых облаков при абсолютной влажности воздуха более 13 г./м или упругости водяного пара более 15 гПа. При благоприятных условиях для развития конвекции и большом влагосодержании воздуха мощно - кучевые облака продолжают расти вверх, и достигают вершинами высот, где температура воздуха настолько низкая, что в облаках начинают образовываться ледяные кристаллы. Таким образом, микроструктура кучево - дождевого

облака смешанная - имеются как капли воды, так и кристаллы льда. Процесс перерастания мощно - кучевого облака в кучево - дождевое происходит очень быстро, иногда в течение 15…20 минут. Признаком такого перерастания может служить изменение формы мощно - кучевого облака. Пока развивающееся облако состоит только из капель воды, оно осадков не дает и имеет резко очерченные контуры. Вершина облаков выглядит подобно головке цветной капусты. Как только верхняя часть облака приобретает кристаллическое строение, оно теряет свои резкие очертания, его края начинают лохматиться, а вершина принимает вид перевернутой метлы (наковальни). Ледяные кристаллы, находясь в соседстве с переохлажденными каплями воды, быстро увеличиваются и начинают выпадать из облака. С момента выпадения осадков облака становятся кучево - дождевыми. Из кучево - дождевых облаков выпадают ливневые осадки в виде дождя, снега, крупы, града. Скорость восходящих

потоков в облаке может достигать 30…40 м/с; за счёт ливневых осадков в кучево - дождевых облаках возникают нисходящие потоки со скоростью 10…15 м/с. Развитие кучево - дождевых облаков, и выпадение ливневых осадков часто сопровождается грозами (), шквалами () и смерчами ().

В зависимости от причин образования, кучево - дождевые облака бывают внутримассовыми и фронтальными. Полет внутри всякого Cb облака опасен и запрещается руководящими документами по следующим причинам:

Сильная болтанка () от нижней границы облака (НГО) до верхней границы облака (ВГО);

Интенсивное обледенение () на всех высотах выше нулевой изотермы;

Возможен разряд молнии через ВС;

Ливневые осадки () ухудшают видимость на взлёте и при заходе на посадку, а град может повредить отдельные части ВС в полёте;

При полёте в сильных ливневых осадках (видимость менее 1000 м) может произойти срыв потока;

Кучево - дождевые облака часто сопровождаются шквалами и смерчами.

Высоко - кучевые хлопьевидные или башенкообразные облака имеют вид крупных хлопьев, разделённых просветами голубого неба, или башенок, посаженных на одно общее основание. Образуются в тёплое время года, как правило, в утренние часы, когда в средней тропосфере наблюдается неустойчивое равновесие воздуха. НГО составляет 3…5 км, толщина - 200…500 м. Непосредственно на полёт влияния не оказывают, но являются хорошим признаком образования грозы в дневные часы. При этом, чем больше башенок или хлопьев, тем ближе по времени гроза.

Перисто - кучевые облака - белые тонкие облака, имеющие вид очень мелких волн, хлопьев, барашков. Образуются на высоте выше 6 км, состоят из кристаллов льда, толщина облаков 200…300 м. На полёт влияния не оказывают.

II. Слоистообразныеоблака

Причина образования - восходящее скольжение. К ним относятся: слоисто - дождевые, разорвано - дождевые, высоко - слоистые, перисто - слоистые и перистые облака.

Слоисто - дождевые облака имеют вид тёмно - серого облачного покрова, как правило, закрывающего всё небо. Высота НГО 300…500 м и менее. Вертикальная мощность колеблется от нескольких сотен метров до нескольких километров. Это смешанные облака с водностью 0,6…1,3 г/м. Из них выпадают обложные осадки - продолжительные, средней интенсивности, занимающие большие площади: 200…300 км по ширине и до тысячи километров по длине. Полёт в таких облаках проходит спокойно, но, выше нулевой изотермы, в облаках, а зимой и в осадках наблюдается обледенение ВС, интенсивность которого зависит от водности облака и температуры воздуха. В осадках НГО размывается и может располагаться на высоте 100 м и ниже, что затрудняет их пробивание при заходе на посадку. Во все сезоны года при полёте в облаках могут возникать значительные электростатические заряды.

Разорванно - дождевые облака представляют собой бесформенные чёрные полосы на общем сером фоне слоистообразной облачности. Причиной их образования является насыщение холодного воздуха (ХВ) обложными осадками, выпадающими из слоисто - дождевых облаков, и динамическая турбулентность, возникающая при движении ХВ по неровностям подстилающей поверхности. Состоят из переохлаждённых капель, иногда ледяных кристаллов. НГО 50…100 м, толщина 100…200 м. Разорванно - дождевые облака затрудняют или исключают взлёт, посадку и визуальные полёты ВС.

Высоко - слоистые облака представляют собой однородную серую пелену толщиной 1…2 км и имеют большую горизонтальную протяжённость. Солнце и Луна просвечивают через них, как сквозь матовое стекло. Это смешанные облака. Из них могут выпадать обложные осадки, которые до земли доходят только зимой в виде снега. Поэтому зимой ширина зоны осадков увеличивается до 400…500 км. При полётах в высоко - слоистых облаках наблюдается обледенение ВС, интенсивность которого зависит от водности облака и температуры воздуха. Вероятность обледенения в этих облаках больше в тёплое время года. Видимость в облаках плохая - несколько десятков метров. При длительном полете в них ВС заряжаются статическим электричеством.

Перисто - слоистые облака имеют вид однородной белой или голубоватой пелены, закрывающей всё небо. Толщина облаков от нескольких сотен метров до нескольких километров. Облака состоят из ледяных кристаллов. Солнце и Луна просвечивают через них, образуя белые или радужные круги - гало. Оно служит признаком последующего ухудшения погоды. При полётах в облаках происходит электризация ВС. Видимость хорошая.

Перистые облака - параллельные полосы с загнутыми к верху передними краями в виде крючков или коготков, поэтому они называются крючковидными или когтевидными. Облака кристаллические, осадки из них не выпадают. Толщина облаков от нескольких сотен метров до нескольких километров. Они располагаются впереди линии фронта на расстоянии 800…1000 км и являются предвестниками плохой погоды. Полёт спокоен, видимость хорошая, но при длительном полёте возможна электризация ВС.

III. Волнистообразные облака

Образуются за счёт: динамической турбулентности, волновых движений слоёв инверсии и изотермии, радиационного выхолаживания подстилающей поверхности. К ним относятся: слоистые, разорвано - слоистые, слоисто - кучевые, высоко - кучевые и перисто - кучевые облака. По внешнему виду они представляют собой, распространённый по горизонтали, слой облаков в виде гряд или отдельных валов, вертикальное развитие которых характеризуется многослойностью.

Слоистые облака - характерны для холодного времени года. Они образуются под слоем инверсии и имеют вид сплошной серой пелены или разорванных облачных масс. Нижнее основание находится на высоте 100…300 м. Облака могут опускаться до земли и переходить в туман. Из них выпадают моросящие осадки. Полёт в облаках и осадках сопровождается обледенением, интенсивность которого зависит от водности облака и температуры воздуха. Из-за малой высоты слоистые облака затрудняют или исключают взлёт, посадку и визуальные полёты.

Слоисто-кучевые облака имеют вид волнистого тонкого либо плотного облачного слоя. Высота НГО 600…1000 м, а зимой - 300…600 м. Толщина - несколько сотен метров. В холодное время из них могут выпадать осадки в виде слабого снега. В облаках можно встретить слабое или умеренное обледенение и слабую болтанку, которая усиливается к ВГО.

Высоко-кучевые и перисто-кучевые облака располагаются, соответственно, в среднем и верхнем ярусах, особого влияния на полёты не оказывают.

Осадками называют капли воды и кристаллы льда, выпадающие из облаков или оседающие из воздуха на земную поверхность. Основными формами осадков являются: дождь, снег, морось, мокрый снег, снежная или ледяная крупа, снежные зерна, град, ледяной дождь, ледяные иглы. К осадкам, оседающим из воздуха, относятся: роса, иней, изморозь, твердый и жидкий налёт на наветренной стороне вертикально расположенных предметов.

По характеру выпадения осадки делятся на: обложные , выпадающие из системы фронтальных слоисто - дождевых и высоко - слоистых облаков; ливневые , выпадающие из кучево-дождевой облачности; моросящие , выпадающие из слоистых и слоисто - кучевых облаков.

В этой статье перечислены и описаны все типы облаков.

Типы облаков

Облака верхнего яруса формируются в умеренных широтах выше 5 км, в полярных – выше 3 км, в тропических – выше 6 км. Температура на этой высоте довольно низкая, поэтому они состоят в основном из кристаллов льда. Облака верхнего яруса обычно тонкие и белые. Наиболее распространённой формой облаков верхнего яруса являются cirrus (перистые) and cirrostratus (перисто-слоистые), которые можно наблюдать обычно при хорошей погоде.

Облака среднего яруса обычно располагаются на высоте 2-7 км в умеренных широтах, 2-4 км – в полярных и 2-8 км – в тропических. Состоят они в основном из мелких частиц воды, но при низкой температуре могут содержать и кристаллики льда. Наиболее распространённым видом облаков среднего яруса являются altocumulus (высоко-кучевые), altostratus (высоко-слоистые). Они могут иметь затененные части, что отличает их от перисто-кучевых облаков. Этот вид облаков обычно возникает в результате конвекции воздуха, а также из-за постепенного восхождения воздуха впереди холодного фронта.

Облака нижнего яруса располагаются на высотах ниже 2 км, где температура достаточно высока, поэтому состоят в основном из капель воды. Лишь в холодное время года. Когда температура у поверхности низкая, они содержат частицы льда (град) или снега. Наиболее распространённым типом облаков нижнего яруса являются nimbostratus (слоисто-дождевые) и stratocumulus (слоисто-кучевые) – темные облака нижнего яруса, сопровождаемые умеренными осадками.

Рис1. Основные виды облаков: Перистые (Cirrus, Ci), Перисто-кучевые (Cirrocumulus, Cc), Перисто-слоистые (Cirrostratus, Cs), Высоко-кучевые (Altocumulus, Ac) , Высоко-слоистые(Altostratus, As) , Высоко-слоистые просвечивающие (Altostratus translucidus, As trans) , Слоисто-дождевые (Nimbostratus, Ns), Слоистые (Stratus, St) , Слоисто-кучевые (Stratocumulus, Sc), Кучевые облака (Cumulus, Cu), Кучево-дождевые (Cumulonimbus, Cb)

Перистые (Cirrus, Ci)

Состоят из отдельных перистообразных элементов в виде тонких белых нитей или белых (или в большей части белых) клочьев и вытянутых гряд. Имеют волокнистую структуру и/или шелковистый блеск. Наблюдаются в верхней тропосфере, в средних широтах их основания чаще всего лежат на высотах 6-8 км, в тропических от 6 до 18 км, в полярных от 3 до 8 км). Видимость внутри облака - 150-500 м. Построены из ледяных кристаллов, достаточно крупных для того, чтобы иметь заметную скорость падения; поэтому они имеют значительное вертикальное протяжение (от сотен метров до нескольких километров). Однако сдвиг ветра и различия в размерах кристаллов приводят к тому, что нити перистых облаков скошены и искривлены. Данные облака характерны для переднего края облачной системы теплого фронта или фронта окклюзии, связанной с восходящим скольжением. Они часто развиваются также в антициклонической обстановке, иногда являются частями или остатками ледяных вершин (наковален) кучево-дождевых облаков.

Различаются виды: нитевидные (Cirrus fibratus, Ci fibr.), когтевидные (Cirrus uncinus, Ci unc.), башенкообразные (Cirrus castellanus, Ci cast.), плотные (Cirrus spissatus, Ci spiss.), хлопьевидные (Cirrus floccus, Ci fl.) и разновидности: перепутанные (Cirrus intortus, Ci int.), радиальные (Cirrus radiatus, Ci rad.), хребтовидные (Cirrus vertebratus, Ci vert.), двойные (Cirrus duplicatus, Ci dupl.).

Иногда к этому роду облаков, наряду с описанными облаками, относят также перисто-слоистые и перисто-кучевые облака.

Перисто-кучевые (Cirrocumulus, Cc)

Их часто называют «барашки». Очень высокие небольшие шаровидные облака, вытянутые в линии. Похожи на спины скумбрий или рябь на прибрежном песке. Высота нижней границы - 6-8 км, вертикальная протяжённость - до 1 км, видимость внутри - 5509-10000 м. Являются признаком повышения температуры. Нередко наблюдаются вместе с перистыми или перисто-слоистыми облаками. Часто являются предшественниками шторма. При этих облаках наблюдается т. н. «иридизация» - радужное окрашивание края облаков.

Перисто-слоистые (Cirrostratus, Cs)

Гало образовавшееся на перистых облаках

Парусоподобные облака верхнего яруса, состоящие из кристалликов льда. Имеют вид однородной, белесоватой пелены. Высота нижней кромки - 6-8 км, вертикальная протяжённость колеблется от нескольких сотен метров до нескольких километров (2-6 и более), видимость внутри облака - 50-200 м. Перисто-слоистые облака относительно прозрачны, так что солнце или луна могут быть отчётливо видны сквозь них. Эти облака верхнего яруса обычно образуются когда обширные пласты воздуха поднимаются вверх за счет многоуровневой конвергенции.

Перисто-слоистые облака характеризуются тем, что часто дают явления гало вокруг солнца или луны. Гало являются результатом преломления света кристаллами льда, из которых состоит облако. Перисто-слоистые облака, однако, имеют склонность уплотняться при приближении теплого фронта, что означает увеличение образования кристаллов льда. Вследствие этого гало постепенно исчезает, и солнце (или луна) становятся менее заметными.

Высоко-кучевые (Altocumulus, Ac)

Формирование высоко-кучевых облаков.

Высоко-кучевые облака (Altocumulus, Ac) - типичная облачность для теплого сезона. Серые, белые, или синеватого цвета облака в виде волн и гряд, состоящих из хлопьев и пластин, разделённых просветами. Высота нижней границы - 2-6 км, вертикальная протяжённость - до нескольких сотен метров, видимость внутри облака - 50-80 м. Располагаются, как правило, над местами, обращёнными к солнцу. Иногда достигают стадии мощных кучевых облаков. Высоко-кучевые облака обычно возникают в результате поднятия теплых воздушных масс, а также при наступлении холодного фронта, который вытесняет теплый воздух вверх. Поэтому наличие высоко-кучевых облаков теплым и влажным летним утром предвещает скорое появление грозовых облаков или перемену погоды.

Высоко-слоистые (Altostratus, As)

Высоко-слоистые облака

Имеют вид однородной или слабовыраженной волнистой пелены серого или синеватого цвета, солнце и луна, обычно, просвечивают, но слабо. Высота нижней границы - 3-5 км, вертикальная протяжённость - 1-4 км, видимость в облаках - 25-40 м. Эти облака состоят из ледяных кристаллов, переохлажденных капель воды и снежинок. Высоко-слоистые облака могут приносить обложной дождь или снег.

Высоко-слоистые просвечивающие (Altostratus translucidus, As trans)

Высоко-слоистые облака на закате

Высоко-слоистые просвечивающие облака. Волнистая структура облака заметна, солнечный круг солнца вполне различим. На земле иногда могут возникать вполне различимые тени. Отчётливо видны полосы. Пелена облаков, как правило, постепенно закрывает всё небо. Высота основания - в пределах 3-5 км, толщина слоя облаков As trans в среднем около 1 км, изредка до 2 км. Осадки выпадают, но в низких и средних широтах летом редко достигают земли.

Слоисто-дождевые (Nimbostratus, Ns)

Слоисто-дождевые облака и сильные воздушные течения.

Слоисто-дождевые облака тёмно-серые, в виде сплошного слоя. При осадках он кажется однородным, в перерывах между выпадением осадков заметна некая неоднородность и даже некоторая волнистость слоя. От слоистых облаков отличаются более тёмным и синеватым цветом, неоднородностью строения и наличием обложных осадков. Высота нижней границы - 0,1-1 км, толщина - до нескольких километров.

Слоистые (Stratus, St)

Слоистые облака.

Слоистые облака образуют однородный слой, сходный с туманом, но расположенном на высоте в сотни или даже десятки метров. Обычно они закрывают всё небо, но иногда могут наблюдаться в виде разорванных облачных масс. Нижний край этих облаков может опускаться очень низко; иногда они сливаются с наземным туманом. Толщина их невелика - десятки и сотни метров.

Слоисто-кучевые (Stratocumulus, Sc)

Серые облака, состоящие из крупных гряд, волн, пластин, разделенных просветами или сливающимися в сплошной серый волнистый покров. Состоят преимущественно из капель воды. Толщина слоя от 200 до 800 м. Солнце и луна могут просвечивать только сквозь тонкие края облаков. Осадки, как правило, не выпадают. Из слоисто-кучевых не просвечивающих облаков могут выпадать слабые непродолжительные осадки.

Кучевые облака (Cumulus, Cu)

Кучевые облака. Вид сверху.

Кучевые облака - плотные, днём ярко-белые облака со значительным вертикальным развитием (до 5;км и более). Верхние части кучевых облаков имеют вид куполов или башен с округлыми очертаниями. Обычно кучевые облака возникают как облака конвекции в холодных воздушных массах.

Кучево-дождевые (Cumulonimbus, Cb)

Кучево-дождевые облака (Cumulonimbus capillatus incus)

Кучево-дождевые - мощные и плотные облака с сильным вертикальным развитием (до высоты 14 км), дающие обильные ливневые осадки с мощным градом и грозовыми явлениями. Кучево-дождевые облака/тучи развиваются из мощных кучевых облаков. Они могут образовывать линию, которая называется линией шквалов. Нижние уровни кучево-дождевых облаков состоят в основном из капелек воды, в то время как на более высоких уровнях, где температуры намного ниже 0 °C, преобладают кристаллики льда.

Облако как явление природы (Реферат, сделанный школьником 10 класса)

В толковом словаре В. Даля дано короткое и в то же время достаточно точное определение облака: «Облако - туман в высоте». Как и туман, облако представляет собой взвесь в воздухе мелких и мельчайших капелек воды. Наряду с водяными капельками в облаке могут находиться также мелкие кристаллики льда. Облако может целиком состоять из таких кристалликов.

Различаются облака между собой ещё и своей видимой толщиной, высотой над землёй, площадью распространения и окраской. Словом, разнообразие их велико.

Классификация облаков

Согласно международной классификации облака по внешнему виду делятся на 10 основных форм, а по высотам – на 4 класса.

1. Облака верхнего яруса – располагаются на высоте от 6 км и выше, представляют собой тонкие белые облака, состоят из ледяных кристаллов, имеют маленькую водность, поэтому осадков не дают. Мощность мала – 200 – 600 м. К ним относятся:

    перистые облака, имеющие вид белых нитей, крючков. Являются предвестниками ухудшения погоды, приближения теплого фронта (рис.2г);

    перисто-кучевые облака – мелкие барашки, мелкие белые хлопья, рябь;

    перисто-слоистые имеют вид голубоватой однородной пелены, которая покрывает все небо, виден расплывчатый диск солнца, а ночью - вокруг луны возникает круг гало.

2. Облака среднего яруса – располагаются на высоте от 2 до 6 км, состоят из переохлажденных капель воды в смеси со снежинками и ледяными кристаллами. К ним относятся:

    высоко-кучевые , имеющие вид хлопьев, пластин, волн, гряд, разделенных просветами. Вертикальная протяженность 200 - 700 м., осадки не выпадают (рис.2 в);

    высоко-слоистые представляют собой сплошную серую пелену, тонкие высоко-слоистые имеют мощность – 300 - 600 м, а плотные – 1 - 2 км. Зимой из них выпадают обложные осадки.

3. Облака нижнего яруса располагаются от 50 до 2000 м, имеют плотную структуру. К ним относятся:

    слоисто-дождевые , имеющие темно-серый цвет, большую водность, дают обильные обложные осадки. Под ними в осадках образуются низкие разорванно-дождевые облака. Высота нижней границы слоисто-дождевых облаков зависит от близости линии фронта и составляет от 200 до 1000 м, вертикальная протяженность 2 - 3 км, сливаясь часто с высоко-слоистыми и перисто-слоистыми облаками;

    слоисто-кучевые состоят из крупных гряд, волн, пластин, разделенных просветами. Нижняя граница 200 - 600 м, а толщина облаков 200 - 800 м, иногда 1 - 2 км. Это облака внутримассовые, в верхней части слоисто-кучевых облаков наибольшая водность. Осадки из этих облаков, как правило, не выпадают (рис 2 б);

    слоистые облака представляют собой сплошной однородный покров, низко нависший над землей с неровными размытыми краями. Высота бывает 100-150 м и ниже 100 м, а верхняя граница – 300-800 м. Могут опускаться до земли и переходить в туман (рис 2 а);

    разорванно-слоистые облака имеют нижнюю границу 100 м и ниже 100 м, образуются в результате рассеивания тумана. Осадки из них не выпадают.

4. Облака вертикального развития. Нижняя граница их лежит в нижнем ярусе, верхняя достигает тропопаузы. К ним относятся:

    кучевые облака – плотные облачные массы, развитые по вертикали с белыми куполообразными вершинами и с плоским основанием. Нижняя граница их порядка 400 - 600 м и выше, верхняя граница 2 - 3 км, осадков не дают (рис 2,д);

    мощно -кучевые облака представляют собой белые куполообразные вершины с вертикальным развитием до 4 - 6 км, осадков не дают;

    кучево-дождевые (грозовые) являются самыми опасными облаками, представляют собой мощные массы клубящихся облаков с вертикальным развитием до 9 - 12 км. С ними связаны грозы, ливни, град (рис 2 е, ж).

Облака переносятся ветрами на огромные расстояния, в результате чего осуществляется постоянный влагообмен между различными областями нашей планеты. Крайне упрощенная схема влагообмена такова: вода из моря попадает в облака, образующиеся над поверхностью моря, затем ветры переносят эти облака на материк, где они изливаются дождями, наконец, через реки вода возвращается обратно в море.

Облачный покров нашей планеты достаточно велик. Облака покрывают в среднем около половины всего небосвода. В них содержится во взвешенном состоянии 10 12 кг воды (льда).

В зависимости от причин возникновения различают следующие виды облачных форм:

    Кучевообразные . Причина их возникновения - термическая, динамическая конвекция и вынужденные вертикальные движения. К ним относятся: а) кучевые б) кучево-дождевые в) мощно-кучевые г) высоко-кучевые д) перисто-кучевые

    Слоистообразные возникают в результате восходящих скольжений теплого влажного воздуха по наклонной поверхности холодного вдоль пологих фронтальных разделов. К этому виду относятся облака: а) слоисто-дождевые б) высоко-слоистые в) перисто-слоистые г) перистые

    Волнистые возникают при волновых колебаниях на слоях инверсии и в слоях с небольшим вертикальным градиентом температуры. К ним относятся: а) слоисто-кучевые б) высоко-кучевые, волнистые в) слоистые г) разорванно-слоистые.

Существует еще одна важная характеристика – облачность , т.е. количество облаков – число условных частей неба, закрытых облаками. Раньше такое число выражалось в баллах (от 0 до 10), сейчас принято выражать в октантах (от 0 до 8).

На рисунке 1 перечисленные типы облаков схематически изображены все вместе, что позволяет представить себе в целом структуру облачного покрова. Все эти облака образуются в пределах нижнего слоя атмосферы, называемого тропосферой. В более высоких слоях атмосферы облаков почти нет; лишь на высотах около 30 км можно обнаружить перламутровые облака да на высотах около 80 км - серебристые облака. Перламутровые облака очень тонкие, они просвечивают; в сумерки вблизи солнца они окрашиваются в красный, золотистый и зеленоватый цвета. Серебристые облака также очень тонкие. Они светятся серебристым цветом ночью, вскоре после захода солнца или незадолго до восхода. Это рассеянный облаками солнечный свет.

Строение земной атмосферы. В известном смысле земную атмосферу можно уподобить слоеному пирогу, она состоит из ряда слоев или, точнее говоря, ряда вложенных одна в другую сфер. Разделение на слои (сферы) проводят, учитывая характер изменения температуры атмосферного воздуха с высотой. На рисунке 3 выделены четыре слоя атмосферы тропосфера, стратосфера, мезосфера, гермосфера - и изображена кривая, отражающая изменение температуры воздуха с высотой.

По мере подъема от поверхности земли температура воздуха сначала убывает. Это известно всем - ведь вершины высоких гор круглый год покрыты снегом и льдами. Тот, кто летал на авиалайнерах, неоднократно слышал сообщения бортпроводниц о том, что температура воздуха за бортом самолета 60-70 градусов мороза. Напомним, что современные авиалайнеры летают на высотах 8-10 км.

Оказывается, уменьшение температуры воздуха с высотой происходит лишь до определенных высот до 17 км над тропиками и 10 км над полярными областями. Эти числа как раз и определяют высоту верхней границы тропосферы (она зависит от географической широты). Температура воздуха на границе тропосферы составляет над тропиками около -75°С, а над полюсами около -60°С.

К тропосфере примыкает стратосфера. В стратосфере температура воздуха при подъеме сначала остается постоянной (до высот 25- 30 км), а затем начинает возрастать - вплоть до высоты 55 км, отвечающей верхней границе стратосферы; при этом температура достигает значений, близких к 0°С. В следующем атмосферном слое- мезосфере температура снова начинает уменьшаться по мере подъема; она падает до -100°С и даже до -150°С на уровне верхней границы мезосферы, имеющей высоту около 80 км. Еще выше начинается термосфера; здесь температура по мере подъема возрастает.

Итак, в тропосфере температура воздуха с высотой уменьшается, в стратосфере температура сначала не меняется, а затем растет, в мезосфере она снова уменьшается и, наконец, в термосфере снова начинает расти. Заметим, что слово «тропосфера» происходит от греческого «тропос», означающего «поворот»; над тропосферой совершается первый поворот температуры. Атмосфера действительно напоминает слоеный пирог: слои, где температура понижается, чередуются со слоями, где она повышается.

Происхождение такого «слоеного пирога» нетрудно объяснить. Ведь снизу атмосфера подогревается земной поверхностью, а сверху солнечным излучением; поэтому ее температура должна возрастать при приближении как к поверхности земли, так и к верхней границе атмосферы. В результате температурная кривая должна, казалось бы, иметь вид, показанный на рисунке 3 пунктиром. В действительности же температура изменяется с высотой не по пунктирной, а по непрерывной линии и обнаруживает некоторое увеличение в области стратосферы. Это повышение температуры вызвано поглощением ультрафиолетовой составляющей солнечного излучения в слое озона (О 3), который занимает интервал высот примерно от 20 до 60 км.

Для образования облаков надо, чтобы воздух был влажным (или, во всяком случае, не слишком сухим) и чтобы происходило достаточно сильное понижение температуры воздуха. Наиболее влажен воздух вблизи земной поверхности, в тропосфере. К тому же в тропосфере температура воздуха с высотой уменьшается. Поэтому неудивительно, что почти весь облачный покров Земли сосредоточен в пределах тропосферы. Серебристые облака образуются значительно выше тропосферы - вблизи верхней границы мезосферы. Существенно, что на этих высотах температурная кривая проходит через очередной и притом относительно сильный минимум. Отметим, что на высотах вблизи максимума температурной кривой (на границе стратосферы и мезосферы) облака никогда не наблюдаются.

Адиабатическое расширение газа

Одним из главных процессов, приводящих к образованию облака, является процесс адиабатического расширения воздуха при его подъеме над поверхностью земли.

Предположим, что некоторая масса газа (в частности, воздуха) расширяется. При этом газ совершает работу А против сил внешнего давления. Пусть Q - теплота, которую газ получает извне в процессе расширения. Совершенная газом работа А и полученная им теплота Q определяют изменение внутренней энергии газа U :

U = Q - A . (1)

Это есть первое начало термодинамики; оно представляет собой не что иное, как закон сохранения энергии для рассматриваемой массы газа.

Изменение внутренней энергии газа связано с изменением его температуры. Пусть Т 1 и Т 2 - соответственно начальная и конечная температуры газа. Будем полагать, что газ состоит из двухатомных молекул и что его молярная масса есть М (для воздуха можно принять М =0.029 кг/моль). Для такого газа

где m - масса газа, кг; R - универсальная газовая постоянная, R =8,3 · Дж/(моль·К); М – молярная масса, кг/моль.

Если Q > A , то U > 0. В этом случае Т 2 > Т 1 , следовательно, газ при расширении нагревается. Если Q = A , то U = 0. В этом случае Т 2 = Т 1 - температура расширяющегося газа остается неизменной (изотермическое расширение).

Для нас интересен случай, когда можно принять Q = 0, т.е. когда можно пренебречь теплообменом между газом и окружающей его средой. В данном случае соотношение (1) принимает вид

U = - А. (3)

Видно, что теперь U < 0 и, следовательно, Т 2 < T 1 -газ при расширении охлаждается.

Рассматриваемый процесс называют адиабатическим расширением газа. При таком расширении газ не получает теплоты извне и поэтому совершает работу только за счет собственной внутренней энергии (в результате чего и охлаждается). Подставляя (2) в (3), получаем формулу, связывающую уменьшение температуры адиабатически расширяющегося двухатомного газа и работу, совершенную газом:

Приведем без вывода формулу для работы адиабатически расширяющегося двухатомного газа:

Здесь p 1 и Т 1 - начальное давление и начальная температура газа, а p 2 - его конечное давление.

Используя две последние формулы найдем, что при адиабатическом расширении воздух при подъеме на 1 км охлаждается на 6 градусов. Адиабатический температурный градиент воздуха

γ а = 0.6 о С/100 м.

О бразование облаков.

Процесс образования облака начинается с того, что некоторая масса достаточно влажного воздуха поднимается вверх. По мере подъема будет происходить расширение воздуха. Это расширение можно считать адиабатным, так как воздух поднимается относительно быстро, и при достаточно большом его объеме (а в образовании облака принимает участие действительно большой объем воздуха) теплообмен между рассматриваемым воздухом и окружающей средой за время подъема попросту не успевает произойти.

Как мы уже знаем, при адиабатном расширении газа его температура понижается. Значит, поднимающийся вверх влажный воздух будет охлаждаться. Когда температура охлаждающегося воздуха понизится до точки росы, станет возможным процесс конденсации пара, содержащегося в воздухе. При наличии в атмосфере достаточного количества ядер конденсации (пылинок, ионов) этот процесс действительно начинается. Если ядер конденсации в атмосфере мало, конденсация начинается не при температуре, равной точке росы, а при более низких температурах.

Итак, достигнув некоторой высоты Н , поднимающийся влажный воздух охладится (в результате адиабатного расширения) настолько, что начнется конденсация водяных паров. Высота Н есть нижняя граница формирующегося облака (рис. 4а). Продолжающий поступать снизу воздух проходит сквозь эту границу, и процесс конденсации паров будет происходить уже выше указанной границы - облако начнет развиваться в высоту (рис. 4б). Вертикальное развитие облака прекратится тогда, когда воздух перестанет подниматься; при этом сформируется верхняя граница облака (рис. 4в).

Теперь рассмотрим, что же заставляет воздух подниматься вверх .

Во-первых , подъем воздушных масс может происходить вследствие конвекции - когда в жаркий день солнечные лучи сильно прогреют земную поверхность, и она передаст теплоту приземным слоям воздуха (рис.5,а). В этом случае говорят об облаках конвекционного происхождения. Кучевые облака имеют чаще всего именно такое происхождение.

Во-вторых , дующий по горизонтальному направлению, вдоль поверхности земли ветер может встретить на своем пути горы или иные природные возвышения. Обтекая их, ветер переместит вверх воздушные массы (рис.5,б). Это тоже внутримассовые облака. Такое происхождение могут иметь слоистые и слоисто-дождевые облака.

В-третьих , облака образуются на теплых и холодных фронтах. Если массы теплого воздуха, перемещаясь в горизонтальном направлении, теснят холодный воздух, возникает так называемый теплый фронт. Если же наступает холодный воздух, то говорят о холодном фронте. Теплый фронт изображен схематически на рисунке 6,а, где красными стрелками показаны перемещения теплого воздуха, а черными - холодного. Вблизи границы между теплой и холодной воздушными массами возникают восходящие потоки воздуха (как теплого, так и холодного). В результате могут образоваться облака горизонтального развития всех ярусов - слоисто-дождевые, высококучевые, перистые. На рисунке 6б показан холодный фронт. Здесь образуются восходящие потоки только теплого воздуха. При этом формируются, как и на теплом фронте, облака всех ярусов. Итак, на теплом фронте наступающий теплый воздух как бы «наваливается» на стелющийся понизу холодный воздух и по нему поднимается вверх. На холодном же фронте наступающий холодный воздух проникает под теплый воздух и как бы приподнимает его.


В-четвертых , вертикальные перемещения воздушных масс могут быть связаны с циклонической деятельностью, которая, в свою очередь, связана с взаимодействием теплых и холодных фронтов.

Циклоны и антициклоны представляют собой мощные атмосферные вихри диаметром до нескольких тысяч километров и высотой 10...20 км.

Циклоны. Вблизи поверхности земли ветры направляются от периферии к центру циклона, поскольку в центре циклона давление воздуха меньше, чем на его периферии. В Северном полушарии ветры «закручиваются» к центру циклона против часовой стрелки, а в Южном - по часовой стрелке. На рисунке 7а красным изображены изобары циклона у поверхности земли; синими стрелками показано направление ветров (для Северного полушария). Стекающиеся к центру циклона воздушные массы устремляются затем вертикально вверх (рис.76). Это приводит к образованию мощных слоистых и слоисто-дождевых облаков, выпадают осадки. В верхней тропосфере возникают горизонтальные ветры, направленные по спирали от центра циклона; они выносят к его периферии воздушные массы, захваченные циклоном. Зарождение или приход уже сформировавшегося циклона всегда приводит к значительному ухудшению погоды, сопровождается длительными дождями.

Приближение центральной области циклона мы чувствуем по понижению атмосферного давления. Мы говорим: «Давление упало - пойдут дожди, будет пасмурно».

Антициклоны. Для антициклонов характерна обратная картина процессов. В центре антициклона давление выше, чем на периферии. В верхней тропосфере ветры «закручиваются» к центру антициклона, а вблизи земной поверхности - от центра; в центре возникают мощные нисходящие потоки воздуха. Опускающийся вниз воздух нагревается, относительная влажность уменьшается, облачность исчезает - устанавливается ясная погода. Недаром повышение атмосферного давления мы справедливо связываем с улучшением погоды.

Физическая природа кучевого облака .

Остановимся немного подробнее на физике процессов, приводящих к образованию обычного кучевого облака конвекционного происхождения. Такое облако имеет значительные вертикальные размеры, указывающие на то, что конвекционные потоки могут подниматься на большую высоту - значительно выше нижней границы облака. Для объяснения обратимся к рисунку 8. На нем приведены (качественно) три зависимости температуры воздуха от высоты. Зависимость 1 относится к воздуху, не участвующему в образовании облака. Этот воздух окружает облако с боков; будем считать, что в нем нет вертикальных потоков. Падение температуры с высотой отражает в данном случае естественный ход температурной кривой в пределах тропосферы. Зависимость 2 относится к поднимающемуся (и, следовательно, адиабатически расширяющемуся) сухому воздуху. При адиабатическом расширении воздух охлаждается, поэтому температурная кривая 2 опускается более круто, чем кривая 1. Следует, однако, иметь в виду, что в действительности вверх поднимается не сухой, а влажный воздух; в результате охлаждения воздуха содержащийся в нем пар будет конденсироваться (начиная с некоторой высоты Н, фиксирующей нижнюю границу облака). При конденсации пара выделяется скрытая теплота парообразования. Количество выделившейся теплоты оказывается довольно заметным. Это приводит к тому, что температура поднимающегося влажного воздуха будет понижаться с высотой медленнее, чем даже температура неподвижного воздуха (температурная кривая 3). Данное обстоятельство является весьма важным. В самом деле, с учетом конденсации пара температура поднимающегося воздуха понижается, оставаясь в то же время выше температуры окружающего неподвижного воздуха. Тот факт, что охлаждающийся воздух остается более нагретым, чем окружающая его среда, обеспечивает способность продолжать подъем все выше и выше. В результате и происходит существенное развитие облака в вертикальном направлении.

Конечно, такое развитие не может быть неограниченным. По мере того как конденсируются водяные пары, воздух становится все менее влажным; он все более подсушивается. Поэтому температурная зависимость 3 уже не реализуется; происходит переход к зависимости 2, отвечающей сухому воздуху (этот переход условно показан на рисунке 8 штриховой стрелкой). Вследствие такого перехода температура поднимающегося воздуха на какой-то высоте сравняется с температурой окружающего воздуха и даже окажется немного ниже ее. В результате вертикальное развитие облака прекратится; холодные массы воздуха, отдавшего свою влагу в облако, начнут растекаться в стороны и опускаться вниз вокруг кучевого облака, формируя характерные для таких облаков барашки.

Макрофизика и микрофизика облаков

Различают макрофизику и микрофизику облаков. Макрофизика изучает перемещения воздушных масс, приводящие к образованию, росту и испарению облака в целом. Микрофизика рассматривает микроструктуру облака, исследует процессы образования, слияния, испарения водяных капель. В частности, микрофизика изучает условия формирования тех или иных осадков.

Облака могут состоять из капелек воды (водяные, или капельные облака), ледяных кристалликом (ледяные или кристаллические облака), а также одновременно из капель и из кристалликов (смешанные облака). Водяные облака существуют не только при плюсовой температуре, но и при температурах ниже нуля (примерно до -20 о С) это переохлажденные водяные облака. Например, при -10°С облака в 50% случаев водяные, в 30% смешанные и только в 20% ледяные.

Водяные капли в облаке имеют различные диаметры - от долей микрометра до нескольких миллиметров. Ледяные кристаллики облака чаще всего имеют форму шестигранных призм-столбиков длиной порядка 0,1 мм и шестиугольных пластинок размером 0,1...0,5 мм.

Как бы ни была мала ледяная капля, она все же существенно тяжелее воздуха. Поэтому возникает вопрос: каким образом водяные капли (а вместе с тем и облако в целом) удерживаются в воздухе? Одновременно возникает и другой вопрос: при каких условиях водяные капли перестают удерживаться в воздухе и падают на землю в виде дождя?

Начнем с наиболее мелких капелек, радиус которых составляет доли микрометра. Таким капелькам не дают падать вниз беспорядочные удары со стороны молекул воздуха, находящихся в хаотичном тепловом движении. Эти удары вынуждают капельку отскакивать в самых различных направлениях; в итоге она движется по причудливо изломанной траектории (броуновское движение).

Чем массивнее капля, тем труднее молекулам воздуха отбросить ее и, следовательно, тем меньше роль броуновского движения, но больше влияние земного притяжения. Когда радиус капли становится больше микрометра, ее движение перестает быть броуновским; капля начинает падать под действием силы тяжести. И тогда «вступает в игру» новый фактор, препятствующий падению капли вниз,- сопротивление воздушной среды.

Пусть в некоторой точке пространства водяная капля радиусом R (пусть, например, R =10 мкм). В этот момент времени на каплю действует только сила тяжести Р

где ρ 0 - плотность воды, g - ускорение свободного падения (– объем капли). Под действием силы тяжести капля начинает падать вниз, ее скорость начинает расти. Одновременно возникает и начинает расти действующая на каплю сила сопротивления воздухаF . Она направлена противоположно силе тяжести и пропорциональна скорости капли u :

F = 6πη Ru , (7)

где η - коэффициент вязкости воздуха. (Вязкость , или, иначе, внутреннее трение - свойство газов и жидкостей оказывать сопротивление перемещению одной их части относительно другой; по этой причине, например, скорость газового или жидкого потока в трубе уменьшается при переходе от оси трубы к ее стенкам.) По мере возрастания силы сопротивления F уменьшается разность Р - F , поэтому скорость падающей капли нарастает все медленнее. Когда сила сопротивления воздуха сравняется по модулю с силой тяжести, дальнейшее увеличение скорости капли прекратится, и далее капля будет падать равномерно (ведь теперь равнодействующая сила, приложенная к капле, равна нулю: Р - F = 0) . Скорость равномерного движения капли u определяется из условия Р - F = 0 с учетом (6) и (7):

Равномерно падающая капля может быть остановлена и даже подброшена вверх восходящим потоком воздуха, если вертикальная скорость потока больше скорости падения капли.

Совсем не просто ответить на вопрос, почему облако не падает на землю. Здесь надо учитывать многое: тепловое движение молекул воздуха, сопротивление воздуха, испарение капель. Надо принимать во внимание также и ряд других факторов. Так, следует иметь в виду, что с увеличением радиуса капли сила сопротивления воздуха начинает играть все более существенную роль из-за того, что относительно большие капли (радиусом более 100 мкм) при своем падении вызывают турбулентные движения в воздушной среде. Надо учитывать также, что в процессе падения радиус капли вовсе не остается неизменным: наряду с испарением происходит дополнительная конденсация пара на поверхности капли, увеличивающая ее радиус. Возможно также слияние данной капли с другими каплями или, напротив, раздробление ее на несколько более мелких капель. Одним словом, микрофизика облака оказывается достаточно сложной.

Перистые облака (Cirrus, Ci) имеют толщину от сотен метров до нескольких километров.Они состоят из ледяных кристаллов в форме игл, столбиков, пластинок.Сквозь них просвечивают светила.Различаются такие виды перистых облаков:нитевидные, когтевидные, башенкообразные, плотные, хлопьевидны, перепутанные, радиальные, хребтовидные, двойные.

Перисто-кучевые облака (Cirrocumulus, Cc) характеризуются небольшой шириной - 200–400 м. Структура облаков комковая.Они прозрачные. Различаются волнистые, кучевообразные с башенками, хлопьевидные разновидности перисто-кучевых облаков.

Перисто-слоистые облака (Cirrostratus, Cs) имеют вид белой или голубоватой полупрозрачной пелены.Их толщина колеблется от 100 м до нескольких километров.

Высоко-кучевые облака (Altocumulus, Ac) выглядят как белые,иногда сероватые волны, состоящие из пластин или хлопьев,разделенных просветами голубого неба,но могут сливаться и в сплошной покров. Толщина слоя высоко-кучевых облаков около 200–700 м.Из них выпадает дождь,снег.

Высоко-слоистые облака (Altostratus, As) образуют сплошной серый или синеватый "ковер" на небе с нижней границей обычно на высоте 3–5 км. Толщина облачных слоев 1–2 км.

Высоко-слоистые просвечивающие (Altostratus translucidus, As trans)

Слоисто-кучевые облака (Nimbostratus, Ns) - это серые облака, состоящие из крупных гряд, волн, пластин, разделенных просветами или сливающимися в сплошной серый волнистый покров. Состоят преимущественно из капель. Толщина слоя от 200 до 800 м. Осадки, как правило, не выпадают. Слоисто-кучевые облака бывают волнистые, кучевообразные, рассекающиеся, вымеобразные.

Слоистые облака (Stratus, St) представляют из себя однородный серый или серо-желтый покров.различаются виды: туманообразные, волнистые и разорванные.Под пеленой слоистых облаков нередко наблюдаются разорванно-дождевые облака.

Слоисто-дождевые облака выглядят как сплошная серая пелена, закрывающий все небо в виде гряд и валов.Они состоят из водяных капель,редко в смеси со снежинками.Нижнее основание облаков может опуститься ниже 100 м, а верхнее- простираться выше 5 км. Из такого вида облаков выпадают обложные осадки.

Кучевые облака (Cumulus, Cu) одразделяют на кучевые, кучевые средние и кучевые мощные.Толщина 1-2 км, иногда 3-5 км. Верхние части кучевых облаков имеют вид куполов или башен с округлыми очертаниями.

Кучево-дождевые облака (Cumulonimbus, Cb) - очень мощные облачные скопления; они бывают «лысые» и «волосатые», с грозовым дугообразным валом спереди.

Облака необычной формы

встречаются редко,чаще всего в тропиках. Их появление связано с образованием тропических циклонов.

тоже очень редкое явление.

Понятие «облачность» подразумевает количество наблюдаемых в одном месте облаков. Облаками, в свою очередь, называются атмосферные явления, сформированные взвесью водяного пара. Классификация облаков насчитывает множество их видов, разделяемых по размерам, форме, природе образования и высоте расположения.

В бытовой сфере для измерения облачности используются специальные термины. Развернутые шкалы измерения данного показателя применяются в метеорологии, морском деле и авиации.

Метеорологи используют десятибалльную шкалу облачности, которая иногда выражается в процентах покрытия обозримого небесного пространства (1 балл - 10% покрытия). Кроме того, высота образования облаков разделяется на верхний и нижний ярусы. Такая же система используется и в морском деле. Авиационные метеорологи используют систему из восьми октант (частей обозримого неба) с более подробным указанием высоты расположения облаков.

Для определения нижней границы облаков используется специальный прибор. Но острую необходимость в нём испытывают только авиационные метеостанции. В остальных случаях производится визуальная оценка высоты.

Типы облачности

Облачность играет важную роль в формировании погодных условий. Облачный покров предотвращает нагрев поверхности Земли, и продлевает процесс её охлаждения. Облачный покров существенно снижает суточные колебания температуры. В зависимости от количества облаков в определённое время выделяется несколько типов облачности:

  1. «Ясно или малооблачно» соответствует облачности в 3 балла в нижнем (до 2 км) и среднем ярусе (2 - 6 км) или любое количество облаков в верхнем (выше 6 км).
  2. «Меняющаяся или переменная» - 1-3/4-7 баллов в нижнем или среднем ярусе.
  3. «С прояснениями» - до 7 баллов суммарной облачности нижнего и среднего яруса.
  4. «Пасмурно, облачно» - 8-10 баллов в нижнем ярусе или не просвечивающиеся облака в среднем, а также с атмосферными осадками в виде дождя или снега.

Виды облаков

Всемирная классификация облаков выделяет множество видов, каждый из которых обладает своим латинским названием. В ней учитывается форма, происхождение, высота образования и ряд других факторов. Основу классификации составляют несколько видов облаков:

  • Перистые облака представляют собой тонкие нити белого цвета. Располагаются на высоте от 3 до 18 км в зависимости от широты. Состоят из падающих кристаллов льда, которым и обязаны своим внешним видом. Среди перистых на высоте свыше 7км облака подразделяются на перисто-кучевые, высоко-слоистые, которые обладают невысокой плотностью. Ниже на высоте около 5км располагаются высоко-кучевые облака.
  • Кучевые облака это плотные образования белого цвета и значительной высоты (иногда более достигает 5 км). Располагаются чаще всего в нижем ярусе с вертикальным развитием в средний. Кучевые облака на верхней границе среднего яруса зовутся высококучевыми.
  • Кучево-дождливые, ливневые и грозовые облака, как правило, располагаются невысоко над поверхностью Земли 500-2000 метров, характерны выпадением атмосферных осадков в виде дождя, снега.
  • Слоистые облака представляют собой слой взвеси небольшой плотности. Они пропускают свет солнца и луны и находятся на высоте между 30 и 400 метров.

Перистые, кучевые и слоистые типы смешиваясь, образуют другие виды: перисто-кучевые, слоисто-кучевые, перисто-слоистые. Кроме основных видов облаков и существуют и другие, менее распространённые: серебристые и перламутровые, лентикулярные и вымеобразные. А облака, образованные пожарами или вулканами называются пирокумулятивными.


Top